
COVID19 Initiative: A curated network of
protein-drug-gene data and virus-host in-
teractions for drug-repurposing research
Aim and Scope
The report describes a resource released to the community by the CLAIRE-COVID19 Bioinformatics work-
ing group. The initiative joins forces from AI, clinical and life-sciences experts working on the analysis
of complex and multi-sourced biomedical data integrating clinical evidence on COVID-19 with genomic
and proteomic information, as well as molecular data. We are exploring data-driven AI methodologies
and bioinformatics approaches covering network data analysis, machine learning, and deep learning for
graphs, predictive modeling, and feature selection of Omics data. Our primary goal is to support the
community with the release of resources for:

• characterising the disease from its related structural information, including prediction of viral pro-
tein folding;

• studying interactions between the virus and human hosts, including analysing protein-protein inter-
action data;

• filtering, retrieval, and generation of targeted drugs leveraging molecular and well as proteomic
information;

• delivering predictive insights onto the genetic features of the virus.

To enable these objectives, as first task we are assembling a resource that fuses information from hetero-
geneous sources and different studies from the literature into a unique network-based representation,
facilitating the use of relational and graph-based learning methods. The document is organised as fol-
lows. First, we present the list of the identified resources, providing for each one of them the descriptions,
the license and the reference source. Then we provide details on the methodology adopted to reduce the
numerosity and the specificity of the GO Terms. Lastly, we give details to easily access the collected re-
sources. We conclude, by giving information about the participants of this subtask.

Identified Resources

ID Used Information Source License
[R1] Protein-Protein Network-based prediction of drug combinations [4] CC BY 4.0
[R2] Protein domains Uniprot [5] CC BY 4.0
[R3] Protein families Uniprot [5] CC BY 4.0
[R4] Protein pathways Reactome [8] CC BY 4.0
[R5] GO-Terms Gene Ontology (GO) [1, 15] CC BY 4.0
[R6] Drug-Protein Network-based prediction of drug combinations [4] CC BY 4.0
[R7] Drug Structures DrugBank [17] CC BY-NC 4.0
[R8] Drug-Drug Network-based prediction of drug combinations [4] CC BY 4.0
[R9] Disease-Gene DisGeNET [14] CC BY 4.0
[R10] Virus-Host interactions BioGrid [13] MIT

Table 1: License and references of the identified resources.

Herea ter we explain the rationale and the motivations that had driven us to select the resources listed
in table 1.
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Protein-Protein [R1]: Protein-Protein Interactions (PPIs) are physical interaction between two or more
proteins. A collection of PPIs, namely PPI network or, is calledmore broadly interactome. A relevant finding
of the interactome is that proteins involved in the same processes can cluster together in the network.
Protein-protein interactions are important because it allows us to understand a protein’s function and its
behavior. Actually, only a small portion of the human protein-protein interactions are studied by in lab
experiments. The host-host interactive collected here consists of 217.161 interactions among the 15.970
human proteins.

Domains [R2]: Domains are distinct functional and/or structural units in a protein. Usually, they are
responsible for a particular function or interaction, contributing to the overall role of a protein. Domains
may exist in a variety of biological contexts, where similar domains can be found in proteins with different
functions. We collected from the Uniprot dataset [5], 15.648 genes-domains associations.

Families [R3]: A protein family is a group of proteins that share a common evolutionary origin. This ori-
gin is reflected by their functions, and thus is possible to notice similarities in their sequence or structure.
We collected from the Uniprot dataset [5], 15.648 genes-families associations.

Pathways [R4]: A biological pathway is an ordered series ofmolecular events occurring amongmolecules
in a cell, and that leads to producing a certain biological product, or change in the involved cell. We re-
trieved from [8] a total of 15.648 genes-pathways associations.

GO-Terms [R5]: Go-Terms are biological terms, or concepts, related to the genes. There exist three
biological ontologies of GO-Terms [1]: Biological process, where terms represent a series of molecular
events or functions; Molecular function, contains activities performed by individual gene products at the
molecular level; Cellular component, describes the parts of the cell and the extracellular environment in
which a gene product may be localized. We collected from [1] 330.519 relations between genes and GO-
Terms. Moreover, we designed a methodology (see able to reduce the high numerosity and specificity of
the GO-Terms. The result of the aforementioned process is readily available with the other resources.

Drug-Host [R6]: A drug is designed to produce a specific desirable therapeutic effect on the target
organism. The relation between a drug and the target molecules of the organism, usually a protein, is
named drug-target association or interaction. We provide 15.052 drug-host interactions yielded by 4.428
drugs, as reported in [4].

Drug Structures [R7]: Drug structures provide information about the topological structure of the drug
molecules, such as spatial coordinates of the atoms and their bonds. We collect 10.674 different drug
structures1 with their unique DrugBank Identifier, taken from the open dataset [17].

Drug-Drug [R8]: A Drug-Drug Interaction (DDI) is an alteration of the drug’s expected effect - on the
target organism - if administered with another drug product. Knowing whether a DDI produces a ther-
apeutic or an adverse effect on the target organism is of paramount importance to repurpose multiple
drugs together. In this resource, we collected 14.079 drug-drug interactions taken from [4].

Disease-Gene [R9]: According to [2], in the molecular network context «a disease is rarely a conse-
quence of an abnormality in a single gene, but reflects the disruptions of the complex intracellular net-
work». Following this perspective, a gene or a gene product (e.g. protein) can be linked to a disease (i.e.
disease gene). We provide a collection of 1.134.942 disease-gene associations gathered through DisGeNET
[14] and 299 gene-disease associations taken from [11].

Virus-Host [R10]: The virus-host interaction represents a physical interaction between a virus molecule
and a host (e.g., human) protein. We collected the information about virus-virus, virus-host, and human-
human interactions related to 20 different viruses. For each virus, the number of interactions can range
from 2 to 2060. Note that virus-host interactions could be seen as disease-gene interactions where the
virus is considered as a disease. Moreover, many Virus-Host interactions could be included in the disease-
gene associations’ collection [R9], but we chose to leave them directly available on their own.

Methodology to process the GO-Terms
The high number (≃ 74700 terms divided into three : Cellular Component, Molecular Function and Bio-
logical Process) and specificity (each protein/gene product is associated on average to 16 ± 17 terms) of
GO-Terms [R5] lead to two main drawbacks: i) the high numerosity will produce high demand for memory
and computational resources when neural network methods will be used; ii) the high specificity will lead

14.283 of which representing drugs from [R6].

2



to learning a smaller amount of patterns and thus can affect the performances of the employed methods.
In order to solve such drawbacks, we decided to preprocess the GO-Terms to reduce their numerosity
without losing their intrinsic semantics. Thus we cluster those terms that expose similar biological func-
tionalities. Since the GO-Terms are complemented by a textual description and they are also organized in
a taxonomy (DAG), we can apply the following approaches:

• Handcra ted selection: Domain experts can select and group together those terms that they consider
to be highly correlated, or they can decide to edit the original taxonomy in order to produce a reduced
version of it.

• Text based: Textual information, as the GO term description of what the term represents in its bio-
logical context, attached to each GO-term can be employed to produce a dense representation [10]
used to cluster together them [9].

• Connectivity based: The connectivity exposed by the taxonomy can be used to build a dense repre-
sentation [7] lately employed to cluster together with the GO-terms.

The handcra ted selection2 can be biased, and it is a time-consuming task based on specific knowledge.
Text based clustering looks to be a promising solution to our problem but suffers from the drawback to
not incorporate the connectivity information (as a result of the aforementioned human-curated process)
contained in the taxonomy. Lastly, we have noted that Gene Ontology is a human-curated resource based
on expert knowledge, and also the textual information of GO reflects the same domain experts’ knowledge.
Our intuition, then, is that all this information is already hiddenly encoded in the taxonomy, and thus we
decided to apply the connectivity based approach as the more complete and efficient.

To implement the connectivity-based approach, we decide to use theNode2Vec [7] algorithm. Node2Vec
learns the embedding of a given node by performing a certain number of random walks starting from the
node of interest (the target node). Each walk results in a sequence of visited nodes (or context nodes).
These node sequences are then used to learn node embeddings by optimizing a skip-gram objective [12].
Node2Vec has 4 main hyper-parameters: the number of random walks r to take for each node, length ℓ
of the random walk, a so-called ”return” parameter p, which specifies the probability of returning to an
already visited node, and an ”in-out” parameter q, which controls the probability of visiting nodes far-
ther away from the target node. Other hyper-parameters are specific to the skip-gram objective, such as
context window size and the number of Stochastic Gradient Descent (SGD) iterations.

Our choice has been to use three different Directed Acyclic Graphs (DAGs) to represent the three GO
namespaces. We applied Node2Vec independently on each DAG. Importantly, we did not consider edge
orientation but treat the DAG as an undirected graph instead, so to capture relationships between nodes
in both directions. For our purposes, we set the hyper-parameters as follows: r has been set to 10 times
the maximum node degree of the Gene Ontology DAG; ℓ has been set to the diameter of the graph; p and q
have been assigned the default value of 1. As regards the skip-gram hyper-parameters, we set the context
window size to 7 and the number of SGD iterations to 5.

An example of the computed embeddings is depicted in Figure 1, where the original space of 128 dimen-
sions was reduced (just for viewing purpose) to 2 using the T-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [16]. As it is possible to notice the GO-Terms (using the generated embeddings) shows
a natural tendency to be organized in clusters (see Figure 1), and by following the intrinsic nature of the
Gene Ontology they expose variable local densities.

In this case, our choice has been to use the Hierarchical Density-Based Spatial Clustering (HDBSCAN)[3],
an evolution of DBSCAN[6] algorithm, where several ϵ values are integrated to find a clustering that gives
the best stability. The above integration strategy allows HDBSCAN to find clusters of varying densities,
and be more robust to parameter selection, that it is exactly the result that we want to obtain. One
characteristic of HDBSCAN is that not all the instances (GO-Terms in our case) are clustered, but part
of them are considered noise and then grouped all together. A researcher that uses this resource can
then decide to recover the “noisy” data points by adding them as singleton or keep ignoring them. The
clustering obtained by applying HDBSCAN, with a Euclidean distance measure, have produced 276, 85, 781
clusters and 6709, 2887, 23515 noisy terms, for the namespaces of molecular function, cellular component,
and biological process respectively. Both, the produced GO embeddings and their clustering are available
in the repository (see Table 2 for their exact location).

2if is not performed by several domain experts

3



Figure 1: Bi-dimensional representation of the embeddings obtained from the Cellular Components GO-
Terms .

How to access the resources
The online repository3 is organised in order to directly reflect the information and nomenclature in this
document. More specifically, Table 2 reports the relative locations of the resources in the online repository:

Resource Location Resource Location
[R1] Protein-Protein protein-protein.tab [R6] Drug-Host drug-host.tab, drug-host_uniprot.tab
[R2] Domains proteins-info.tab [R7] Drug Structures drug-structures.sdf
[R3] Families proteins-info.tab [R8] Drug-Drug drug-drug.tab
[R4] Pathways proteins-pathways.tab [R9] Disease-Gene disease-gene/
[R5] GO-Terms go-terms.tab [R10] Virus-Host virus-host/
GO Embeddings GO_terms/*_emb_128.txt GO Clutering GO_terms/*_cluster_*.txt

Table 2: Pointers of the identified resources in the repository.

For a detailed description of data and formats look at the README.md file.

Contributors to the Resource
Davide Bacciu is Assistant Professor at the Department of Computer Science, University of Pisa. His re-
search spans several fundamental and applied aspects of machine learning, including the design of neural
and generative learning models, graph and relational data processing, and distributed learning systems
with applications to IoT, smart living, transportation, robotics and health. He has been the coordinator of
European H2020, Italian national and industrial research projects. He received the 2009 Caianiello Award
for the best Italian Ph.D. thesis in neural networks. He is Secretary and board member of the Italian As-
sociation for AI, a member of the IEEE Neural Networks committee and the chair of the IEEE task force
on Learning for Structured Data. He coordinates the CLAIRE COVID19 working group on Bioinformatics.
Available at: bacciu@di.unipi.it

Federico Errica is a Ph.D. student at the University of Pisa, Italy. He received his Bachelor and Master’s de-
grees in Computer Science in 2015 and 2018, respectively. His interests are machine learning for structured

3https://github.com/CLAIRE-COVID-T4/covid-data
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data with particular emphasis on probabilistic and neural models for graphs. In 2019 he was a research
intern at Facebook AI London. He has published at top-tier conferences (ICML, ICLR), and he currently
volunteers as a reviewer for top-tier journals (TNNLS, TPAMI). Available at: federico.errica@phd.unipi.it

Alessio Gravina received his Bachelor and Master of Science in Computer Science from University of Pisa,
Italy, in 2018 and 2020, respectively. His interests are related to the area of Machine Learning, and he has
experience in its application to the biomedical domain. In 2018 he was one of the three winners of the
Fujistu AI-NLP Challenge, while in 2019 he was a visiting student at University College Dublin (UCD). In the
same year, he was a visiting student researcher at Stanford University researching, in collaboration with
SPARK, on graph learning for Schizophrenia treatment. Available at: gravina.alessio@gmail.com

Francesco Landolfi is a Ph.D. student at the University of Pisa, Italy. He received his Master’s degree in
Computer Science in 2019. His research interests are machine learning and graph-theoretical approaches
for geometric deep learning. Available at: francesco.landolfi@phd.unipi.it

LorenzoMadeddu is a PhD student at the Department of Translational and Precision Medicine at Sapienza
University of Rome with a Computer Science Master Degree. His research interests focus on machine
learning, graph mining and Network Medicine. He is involved in interdisciplinary projects in the fields of
Healthcare and PrecisionMedicine and is supported by the “Sapienza information-based Technology Inno-
vaTion Center for Health - STITCH”. He received his master degree in Computer Science from the Sapienza
University of Rome in 2018. Available at: madeddu@di.uniroma1.it

Marco Podda is a Ph.D. student at the University of Pisa, Italy. He received his Master’s degree in Com-
puter Science in 2017. His research interests are machine learning and deep learning for graph data, with
emphasis on deep generative models. His research finds application in the bio-medical field. Available
at: marco.podda@di.unipi.it

Giovanni Stilo is an Assistant Professor in the Department of Information Engineering, Computer Science
and Mathematics at the University of L’Aquila. He received his Ph.D. in Computer Science in 2013, and
in 2014 he was a visiting researcher at Yahoo! Labs in Barcelona. Between 2015 and 2018, he was a re-
searcher in the Computer Science Department at La Sapienza University, in Rome. His research interests
are in the areas of machine learning and data mining, and specifically temporal mining, social network
analysis, network medicine, semantics-aware recommender systems, and anomaly detection. He has or-
ganised several international workshops, held in conjunction with top-tier conferences (ICDM, CIKM, and
ECIR), and he is involved as editor and reviewer of top-tier journals, such as TITS, TKDE, DMKD, AI, KAIS,
and AIIM. His research is supported by the MIUR under grant “Dipartimenti di eccellenza 2018-2022” of the
Department of Computer Science of Sapienza University, by the “Sapienza information-based Technology
InnovaTion Center for Health - STITCH” and by the “Territori Aperti project” funded by “Fondo Territori
Lavoro e Conoscenza CGIL, CSIL and UIL”. Available at: giovanni.stilo@univaq.it
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