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ABSTRACT
In this paper we propose an extended version of random walks,
named Random Watcher-Walker (RW 2), to predict disease-genes
relations on the Human Interactome network. RW 2 is able to learn
rich representations of disease genes (or gene products) features
by jointly considering functional and connectivity patterns sur-
rounding proteins. Our method successfully compares with the
best-known system for disease gene prediction and other state-of-
the-art graph-based methods. We perform sensitivity analysis and
apply perturbations to ensure robustness. Differently from previ-
ous studies, our results demonstrate that connectivity alone is not
sufficient to classify disease-related genes.
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• Computing methodologies→Machine learning; Learning
latent representations; Supervised learning; Neural networks; •
Applied computing→ Biological networks; Bioinformatics.
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1 INTRODUCTION
In the last decades, academic research and technological develop-
ments support the evolution of medical knowledge, on the one
hand, providing a continuously growing set of biomedical data and
on the other side revealing a complexity only perceived until now.
In this context, biological networks have become a central hub of
multidisciplinary research [29], to address essential challenges on
both diagnostic and therapeutic aspects such as drug development
and disease classification [6, 15, 28].

Network Medicine [3] (NM) is a relatively recent approach to
analyze the complexity of biomolecular structures. The standard
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reductionist approach tries to identify a single disease by decou-
pling the complex biological or medical phenomenons into multiple
components. NM, surpass the standard reductionist approach, ex-
ploiting the network topology (e.g. the relations among biological
entities) and the network dynamics (e.g. the information flow across
the network) to understand the pathogenic behaviour of complex
molecular interconnections. A central finding of NM[3] is the fol-
lowing: “If a gene or molecule is involved in a specific biochemical
process or disease, its direct interactors might also be suspected to
have some role in the same biochemical process. In line with this ‘lo-
cal’ hypothesis, proteins that are involved in the same disease show
a high propensity to interact with each other”. Several published
studies, such as [8, 22, 26] support this hypothesis.

It is important to stress the potential impact of network meth-
ods to progress in this field. In fact, traditional ways to assess the
role of genes in diseases involve time-consuming and extremely
expensive1 statistical studies based on sequencing the DNA of a
large number of patients affected by a given disease, known as
Genome-Wide association studies (GWAS). In this context, network
science and machine learning methods can be effective in reducing
the number of alternatives to be explored in clinical experiments.
Recent studies in Network Medicine and genetic research, focusing
on the analysis of disease-gene relationships, highlight that only
the 10% of genes is related to a disease (disease gene). In addition, it
has been noted that disease genes related to the same disease, tend
to be limited in a structural context in protein-protein interaction
(PPI) networks. The objective of this paper is to contribute to the
problem of predicting disease-related genes. We present a graph-
based approach, based on an extended notion of random walks, to
extract topological information and functional properties of local
sub-structures within the human interactome network. Detected
patterns are then used to train a machine learning predictor. The
main contributions of this paper are summarised as follows:

(1) We present a new framework for disease gene prediction
based on a variant of randomwalks, named RandomWatcher-
Walker (RW 2).

(2) We show that exploiting connectivity properties alone is not
sufficient to reliably identify disease-related genes.

(3) We show that, given high incompleteness of the interactome
network, a careful aggregation of diseases into categories
might considerably help predictive methods.

2 RELATEDWORK
Recent research fields such as SystemBiology andNetworkMedicine
(NM) [3] have led to new approaches integrating the so-called -omics
fields of study (i.e. genomics, proteomics and metabolomics) and
1https://www.genome.gov/27541954/dna-sequencing-costs-data/
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network science. In these studies, complex physical and structural
interactions between molecules are modelled as a graph structure,
called interactome. As mentioned in the introduction 1, the driving
idea of NM is that the study of network topology and dynamics
can accelerate the discovery of new biological interactions and
pathways [5], which in turn will drive progress on disease treat-
ments and personalised medicine. Several issues complicate the
application of computational methods to the human interactome:

(1) Incompleteness: it is estimated that only 20-30% of the exist-
ing interactions have been discovered [25]. Predictive tasks
in such incomplete environments are particularly challeng-
ing.

(2) Reliability: although much protein-protein interaction (here-
after PPI) datasets are available in literature (see Section
3), relationships are not sufficiently reliable, unless experi-
mentally tested on multiple assays (see Section 4 for details).
Only few recent experimental efforts are based on this idea,
like HI-III [10].

(3) Negative knowledge: when a relationship is not present be-
tween two biological entities, we are not sure if it actually
does not exist or if it is still unknown. For some types of
predictive task, like link prediction, empirical methods have
been proposed to simulate negative knowledge (e.g. negative
sampling) used to predict negative PPIs. In this approach,
negative instances are chosen by randomly pairing proteins
and then removing pairs already included in the positive
examples. However, the limited reliability of negative sam-
pling in link prediction has been recently demonstrated in
more than one study (among the others, [19]), especially
since negative links generated by this approach are highly
influenced by the presence of hubs in the set of positive
PPIs. As a consequence, training and testing with these neg-
ative datasets may significantly overestimate performances
[12]. More recent efforts are based on the idea of generating
reliable datasets of negative PPIs based on multiple experi-
mental assays; however, experimentally tested negative PPIs
have not yet been publicly released. Note that, It is practi-
cally impossible for biologists, given available techniques,
to demonstrate the absence of a relationship. Despite this,
the use of negative knowledge (e.g. generated by random
sampling) is commonly employed in many studies (e.g., Phe-
noRank [7]).

These specific characteristics of the interactome network cause
many commonly used graph-mining methods to be ineffective. For
example, [2] and [8] found that community detection algorithms
and centrality measures fail to identify relevant structures, because
of incompleteness of the knowledge. On the other hand, the interest
of scientists in NM remains high, since a growing interdisciplinary
effort gives hope for an acceleration of results in this field.

In this paper, we are concerned with a specific predictive task,
Disease Gene Prediction (DGP). DGP is a relevant, but still open,
research topic, since the genetic bases of diseases are largely un-
known. Currently, only 10% of genes have a known association
with some disease [3]. Genome-Wide associations studies (GWAS)
have led to the collections of such associations in databases, like

OMIM [9] and DisGenNet [20]. However, as mentioned in the in-
troduction, GWAS studies are very expensive and labour-intensive.
Several PPI-based computational approaches for the DGP problem
have been presented in the literature. The most relevant approaches
can be divided into three categories[3]:

(1) Linkage Methods: Linkage is the "tendency for genes and
other genetic markers to be inherited together because of
their location near one another on the same chromosome"2.
Linkage methods are based on the idea that genes, associ-
ated with a given disease or disease category, are often in a
given linkage interval (i.e. the chromosomal location falls
within one or more "disease loci"). The information of the
linkage interval can be used to restrict the number of can-
didate genes for a given disease. Given a disease dj , let V c

j
be the set of nodes (genes) in the linkage interval of dj . V c

j
is the set of candidates among which the genes related to
dj must be predicted. Let D j be a set of diseases which are
functionally similar to dj (we can refer to D j as a disease
category). Moreover, let Vj denote the genes which are al-
ready known to be related with D j . Disease genes among
the candidates V c

j are predicted among those in the direct
neighbourhood ofVj as in [18]. The main problem with link-
age methods is that identifying the causal genes at disease
loci is often difficult, as noted in [7], and the co-occurrence
of genes in the same chromosomal location is a probable, but
not necessary, condition.

(2) Diffusion Methods: the majority of these methods, like
[11, 13, 24, 27], are still based on linkage intervals to reduce
the number of candidate genes for a given disease. However,
they rely on more complex connectivity approaches to filter
candidates. For example, in order to find novel disease-gene
candidates, [11] introduce random walk with restart (RWR),
starting from genes known to be associated with a given
disease category. RWR and phenotypic information are used
in a recently published method, PhenoRank [7]. PhenoRank
exploits the phenotypic similarity of an input disease (query
disease) with other human and mouse-mutant diseases. The
similarity values between nodes of a PPI network are prop-
agated across the network so that genes that interact with
many high scoring genes are highly scored. Eventually,to
avoid the bias induced by the fact that less studied genes
are less connected within the PPI network, the p-value of
each gene score is computed comparing it to the distribution
of scores the gene receives for simulated sets of phenotype
terms.

(3) Module-basedMethods: these approaches [8, 22] are based
on network connectivity properties. The base hypothesis
suppose those candidate genes belonging to the same neigh-
bourhood (or module) are more likely to be involved in the
same diseases. Note that notions of "neighbourhood" and
"module" are vague here, and standard community detection
algorithms fail. Both approaches start with a given disease dj
(or disease category), consider the set of genes known to be
associated with dj - the initial "disease module" - and expand
the module by exploiting the structure of the network. The

2https://www.medicinenet.com/script/main/art.asp?articlekey=4166
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main idea of DIAMOnD [8] is based on the use of a con-
nectivity significance measure, designed to take advantage
of the weak interconnection properties of the interactome.
Using this metric, DIAMOnD first generates a connection
ranking for each node, concerning a chosen disease module.
DIAMOnD works by iteratively expanding a single disease
module with the first ranked node identified in each iteration.
Unlike DIAMOnD, Gladiator [22] considers multiple disease
modules simultaneously. Gladiator is based on the intuition
that diseases with common phenotypes (common sets of
symptoms) are also likely to share molecular mechanisms. In
order to predict gene-disease relationships, Gladiator uses a
simulated annealing algorithm that considers both informa-
tion on phenotypic similarity and protein interconnections.
One of the problems with this approach is that phenotypic
data is not available for all genes [7], potentially influencing
the performance of this method.

In this paper, we introduce a graph-based method, Random
Watcher-Walker (RW 2), to learn rich representations of gene (or
gene products) features, followed by a neural network predictor to
detect candidate genes.

Differently from other methods surveyed in this Section:
• we do not rely on the linkage interval hypothesis;
• we do not consider diseases (or disease categories) one at
the time, but jointly predict all disease-related genes;

• we do not rely on heuristic methods to simulate negative
knowledge, which, as already noted, tend to boost perfor-
mance artificially;

• rather than using ad-hoc PPIs and categorizations, we ana-
lyze the influence of different PPIs and disease categoriza-
tions on the systems’ performance.

3 RW 2 METHODOLOGY
We predict disease genes using a graph-based methodology which
jointly learns functional and connectivity patterns surrounding
proteins in the human interactome. The network model G(V, E) is
shown in Figure 1: nodes v ∈ V are proteins or protein products,
and edges e(u,v) ∈ E, u,v ∈ V are interactions. In our approach,
each nodev ∈ G is further described by a feature vector f (v), which
is a one-hot vector where a "1" indicates that a specific disease f jk is
associated to a node v . Note that we consider mono and poly-genic
diseases (those influenced by more than one gene). Furthermore, a
gene might be associated with more than one disease. The method-
ology to predict disease-related genes can be summarized in three
steps:

• Step 1 - RandomWatcherWalker: we collect network con-
nectivity patterns using a novel method, Random Watcher-
Walker (RW 2). In RW 2, the walker, when landing on node
v , "watches" the node features and selects one disease label
at random with uniform probability in those cells of f (v)
that are equals to 1. Next, it "walks" with uniform proba-
bility to one of v’s neighbours. In this way, random walks
embody both functional features of traversed nodes (disease
labels), and structural features (connected proteins in the PPI
network). RW 2 can be seen as a label sequence generation
where ve denote the eth node in the walk, and le denotes

the selected label of ve . The generation process satisfies the
following distribution:

P(ve = x, le = a |ve−1 = y) =


π (y, x) · σ (x,a) if (y, x) ∈ E and a is a label of x

0 otherwise

where π (y, x) is the normalized transition probability be-
tween nodes y and x; σ(x,a) is the normalized probability of
selecting the node-label a in f (x).
Note that our RandomWatcher Walker approach is meant to
exploit one relevant finding of Network Medicine, the "mod-
ular" structure of diseases in the interactome: our intuition
is that random walks crossing nodes associated with disease
modules that are either close, or intersect each other in the
interactome, should have similar label subsequences since they
are extracted from a similar neighbourhood. Given the "loose"
notion of neighbourhood implemented by random walks,
similarity patterns might be captured even in the presence
of highly incomplete knowledge.

• Step 2 - Label Embeddings: collected network connectiv-
ity patterns are treated as "contexts" for individual labels, (as
shown in Figure 2) much in the same way as sentences are
contexts for individual words. Contexts are used to train a
Skip-Gram [16] model and learn label embeddings (embed-
dings are "dense" vector representations of feature labels,
a popular method used in Machine Learning to cope with
feature sparsity). Label embeddings are used to enrich the
multidimensional feature vector f (v) of each node of G: val-
ued cells are replaced by the respective embedding vectors,
producing the enriched feature matrix F (v).

• Step 3 - Training: feature matrices F (v) are used to train
a fully connected neural network (NN) with Softmax ac-
tivation function, for predicting disease-gene associations
(Figure 3). The system’s output is a (|D | + 1)-dimensional
probability vector, where |D | is the number of considered
disease labels and the additional class label is UNK, to state
the absence of known disease relations for a given node.

4 EVALUATION ENVIRONMENT
In this section, we describe the dataset and features used for our
experiments, the adopted data transformation methodology, and
the experimental strategies and setup.

4.1 Interactomes datasets
PPI networks: Protein-protein interactions are mostly derived from
databases curated from the literature (hypothesis-driven), like In-
tAct [17], BioGrid [23],MINT [4]. These datasets may be affected by
inspection bias (also termed study bias or investigational bias[14])
since they depend on the purposes of a study. In our experiments,
however, we aim at using highly reliable PPI datasets obtained via
clinical tests (discovery-driven), although this may lead to a higher
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{D1, D2, D3}

{D4, D5, D6}
{D3}

{D1, D4}

{D1, D5, D6}
{D1, D5}

{D5, D6}

Figure 1: The network model: each node (a gene or gene product) is described by a feature vector. A "1" in a cell means that the
considered node is associated with a specific disease category.

Figure 2: Example of "context" for the disease category mycobacterium infections. In each step t of the walk, a node v(t) is
randomly selected among those connected with the previous nodev(t − 1), and next, a label is randomly extracted from f (v(t)).
The figure shows a fragment of a specific (double) randomwalk, centred on the labelmycobacterium infections, a disease label,
extracted in step t of the random walk. Left context labels have been extracted in steps t − 1, t − 2 . . . while right context labels
have been extracted in steps t + 1, t + 2 . . . .

.

Figure 3: Training the NN with feature matrices

sparsity. Finally, we do not use synthetic datasets, since these gen-
erated datasets can hardly satisfy the statistical properties of the
real interactome, and may lead to overestimated performances.

In our experiments, we used the following PPIs:

• DIAMOnD: For comparison, we use the same interactome
(PPI) network used in DIAMOnD [8], obtained from curated
literature.

• HI-III: this dataset contains protein-protein interactions
identified by high throughput yeast two-hybrid screens ap-
plied systematically on pairwise combinations of human
protein-coding genes using high throughput yeast two-hybrid
screens (Discovery-driven or hypothesis-free). The quality
of these interactions is further validated in multiple orthog-
onal assays. The effect of the inspect bias on this type of

dataset is negligible[14]. HI-III is publicly available on the
HuRI website3.

Table 1 shows some network statistics. We note that DIAMOnD is
slightly more connected, and larger, than HI-III. Another important
difference is that nodes in HI-III are isoform proteins, while in
DIAMOnD, they are genes. More importantly, relationships in HI-
III are considered highly reliable.
Disease categories: Disease categories with a genetic basis were ob-
tained fromDIAMOnD[8] (disease-gene associations fromOMIM[9]
and GWAS[21]), Phenorank[7] or Disgenet [20]. Table 2 shows the
effect of applying these three categorization types to the DIAMOnD
and HI-III PPI network. Clearly, since the DIAMOnD categorization
has been manually conceived for the DIAMOnD PPI network, all
categories (70) map to some of the nodes in the network. Similarly
to what the authors do, we consider only diseases modules with at
least 20 genes associated with it. When we apply the same classifi-
cation and dimensionality filter to HI-III, only 10 category labels
out of 70 have at least one module associated with it. Disgenet
categories with the same dimensionality filter are 31 both in HI-III
and DIAMOnD. Finally, only 16 Phenorank categories could be
associated to HI-III and 12 to DIAMOnD, and we had to reduce the
dimensionality filter to the size of 10.

4.2 Data Preparation
Figure 4 shows, for each node v of the interactome, the enriched
multidimensional feature matrix F (v) (left) and the correspond-
ing ground-truth output vectors D (right) to be used for training.
Dark cells in F (v) represent embedding vectors associated with
valued feature labels in the original f (v), while white cells are zero
vectors. The (|D | + 1)-dimensional ground-truth vector D has the
3http://interactome.baderlab.org/about/
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PPI network N. Nodes N. Edges Graph Density Connected Components Avg. Number of Neighbors

HI-III 8490 54495 0,0015 71 13
DIAMOnD 13458 141272 0,0016 89 20

Table 1: Network statistics

PPI network DIAMOnD Category Labels (CL) Disgenet CL Phenorank CL

HI-III
N. of Different Diseases 10 31 16
Diseases Nodes (%) 7% 14% 6%
N. of Disease Nodes 479 1187 1008

DIAMOnD
N. of Different Diseases 70 31 12
Diseases Nodes (%) 11% 8% 9%
N. of Disease Nodes 2843 1084 850

Table 2: Effect of using different disease categorizations on different PPIs

ith cell equal to 1 if the node is known to be associated with the
corresponding disease d ∈ D. The last cell of this vector is 1 if no
disease is known to be associated with the node.

Figure 4: Feature Matrices and ground-truth vectors

Figure 5: Modified Feature Matrices for the learning phase

The dataset in Figure 4 cannot be used for training, because the
NN would trivially learn that if a disease vector is valued in F (v),
then the corresponding cell of the output should be 1. To avoid
trivial learning, we train the NN using a modified feature matrices,
as shown in Figure 5.

(1) If a node v is known to be related to a single disease d , Dv :
{d}, |Dv | = 1, then the corresponding embedding vector
from the feature matrix F (v) is replaced with a zero vector.
For example, nodes 2), 3) and 5) of Figure 4 are modified as
in Figure 5. Notice that in this way a node with no valued
cells in the disease dimension (instances 1 and 2 of Figure 5),

can either be "unknown" - which corresponds to a 1 in the
last cell of the ground-truth vector - or known to be related
with one disease. Only connectivity properties may allow a
distinction between these cases;

(2) If a nodev is known to be related tom diseasesDv : {d1, . . . ,dm },
|Dv | = m, then its feature matrix is duplicated intom ma-
trices. Each duplicated matrix is associated with only one
disease dk ∈ Dv . In each duplicated feature matrix F (v)k

we replace the corresponding embedding vector of the asso-
ciated disease dk with a zero vector, and we keep only the
1 associated with dk in the related ground-truth vector Dk .
For example, node 4 in Figure 4 is duplicated in 4.a and 4.b
in Figure 5. In this case, the NN is encouraged to learn also
from co-morbidities.

4.3 Method Settings
The dataset shown in Figure 5 is used to train the NN with a 80-20
train-test split. Then, we average the performances on 10 exper-
iments. Tables 3 and 4 show the system parameters for our best
experiment when using DIAMOnD PPI and categories. We discuss
the parameter sensitivity in Section 5.

Random Walk Parameter Value

Label Embedding Length 300
Walk Length 20
Number of random walks per node 300
p 1
q 1
Skip-Gram context window 3
Skip-Gram Epochs 10

Table 3: Best RW 2 parameters.
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NN Parameter Value

Hidden Layer 0
Activation Function Softmax
Loss Binary Cross-entropy
Optimizer Adam
Batch Size 100
Epochs 5

Table 4: Best NN parameters.

5 EXPERIMENTS
5.1 Performances Evaluation
Given the previously outlined characteristics of biomedical data,
evaluation measures such as precision, accuracy and f-score are
ineffective, since there is no assessed experimental method to create
negative examples. In line with other works [8, 22] in this domain,
we use Recall@k, the fraction of correctly predicted items at rank
k. Notice that, since reliable knowledge on negative interactions
is not available, measures such as precision and AUC cannot be
used. In all our experiments, we set the k value of Recall@k to 1
because the intended use of network methods in medicine is to
exploit the results with the highest confidence, and to narrow the
scope of expensive and labour-intensive clinical tests. We compare
our system with:

(1) A baseline method which uses only functional information,
i.e. the feature vectors f (v) without label embeddings. This
corresponds to exploiting only functional (feature) similarity.

(2) DIAMOnD, which is commonly considered the state of the
art and most cited study on disease gene prediction (see Sec-
tion 2). DIAMOnD exploits only connectivity information.

(3) RWR4 (Random Walks with Restart) [11] that, like for DI-
AMOnD, uses only connectivity information. RWR is com-
monly used as a comparison in recent literature on DGP.

Notice that we do not compare with Phenorank since it is a data-
dependent algorithm. In order to rank the genes in the network, it
needs to compute similarities between diseases and mouse mutants
genes, exploiting their common phenotypes. In this context, Phe-
norank works only with specific datasets of mouse mutants and
phenotypes, making it hard to re-use these data on a new network
of proteins or genes.

For all the above-listed methods, during the training phase, we
remove 20% of the information concerning disease-node relation-
ships and use these data for testing. Each experiment is repeated
10 times with different splits of the learning and test set. Next, we
compute the Recall@1 and average over all folds.

Notice that computing Recall@1 for DIAMOnD is not straight-
forward. In the evaluation experiments of DIAMOnD, diseases are
considered one at the time. The node-disease associations are re-
moved from a given fraction of the nodes N ′

d known to be related
with disease d . Next, they apply an iterative method in which, at
each iteration, they add a new node n (the most likely node among
those considered) to the current set of nodes believed to be related
to d . In their paper, the authors perform 200 iterations, and lastly,
they compute the Recall, i.e. the fraction of disease nodes retrieved

4We used the following implementation https://github.com/TuftsBCB/Walker

by their method, among those (N ′
d ) that were initially removed.

Although the authors do not explicitly set/report a k value for
the Recall, we can assume that setting k=1 for their system is an
upper −bound of the real system performances. In our experiments,
we use the software made available by the authors, and adopt the
same iterative methodology, removing 20% of disease-node associa-
tions, like for the other compared methods.

The results of all comparative experiments are shown in Table 5.
Table 5 shows variable performance depending mainly on the

combination of PPI and disease categorization adopted: not sur-
prisingly, all systems perform better on the DIAMOnD PPI when
using DIAMOnD category labels, since this classification is more
fine-grained and has been manually curated by medical experts
specifically for this PPI (in fact, as shown in Table II when applied to
HI-III, only 10 out of 70 defined disease categories could be mapped
onto the PPI). We further observe that:

(1) Contrary to DIAMOnD and RWR, RW 2 exploits both node
attributes and connectivity features, which systematically
results in better performances; however, when fewer, ormore
coarse disease categories are used (as in columns 2-4), RW 2

reduces its ability to retrieve context-dependent differences
in the neighbourhood of a disease-node, and its advantage
over the other connectivity-based methods is reduced (or
even lost, as in column 4);

(2) Using only similarity of feature vectors f (v) (the Baseline
method) does not allow to learn regularities, which is moti-
vated by the high incompleteness and sparsity of available
features. In other terms, co-morbidity alone is an extremely
weak predictor of disease-genes;

(3) As also demonstrated in [1], RWR does not perform worse
than DIAMOnD; on the contrary, it seems to work better
especially in the experiment of column 1;

(4) In general, the performance of all systems are much lower
than claimed in the respective papers: as already discussed,
these methods use negative sampling (except for DIAMOnD)
that appears to boost performances artificially.

Concerning DIAMOnD, we remark that in [8] the reported Recall
is higher, but limited to two diseases, lysosomal storage diseases
and lipid metabolism disorders, that show the higher density of the
respective modules. For completeness, Table VI compares RW 2 and
DIAMOnD on these very same diseases. Furthermore, the authors
of [22], in an experiment considering all diseases (on a slightly dif-
ferent dataset), reported that DIAMOnD was "able to recover 13.3%
of the removed associations", which in line with the performance
value (14%) in Table 5.

5.2 Robusteness and Sensitivity analysis
We perform a robustness test of RW 2 by randomly rewiring edges5,
by relabeling nodes features, and by exploiting both. The result is
shown in Table 7. The table shows that while a severely relabeling
affects the system’s performance, rewiring only results in a ∼3%
points decrease in performance. Although this difference is statis-
tically significant (p < 0.02), it clearly shows that connectivity is
a weak feature. This is in line with Table 5, that shows extremely

5We use the method in http://bit.ly/2N0sKHf

https://github.com/TuftsBCB/Walker
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Methods Datasets used for PPI and disease categories
DIAMOnD (DIAMOnD) HI-III (DIAMOnD) HI-III (Disgenet) HI-III (Phenorank)

RW 2 40.97% (0.90%) 33.29% (1.12%) 7.56% (0.71%) 4.87% (0.73%)
Baseline 0.26% (0.24%) 0.01% (0.36%) 0.47% (0.43%) 0.03% (0.57%)
DIAMOnD 14.05% (1.32%) 4.99% (1.46%) 3.38% (1.34%) 6.06% (2.06%)
RWR 22.29% (1.34%) 5.76% (1.71%) 3.80% (0.96%) 5.03% (2.79%)

Table 5: Macro Recall@1 and standard deviation (in parenthesis) over 10 folds.
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(a) Performance as a function of the dimension of embedding vectors.
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(b) Performance as a function of the dimension of Skip-gram context window.

Figure 6: Sensitivity analysis (DIAMOnD PPI and DIAMOnD categories)

Disease Module RW 2 DIAMOnD
lysosomal storage diseases 85% 53%
lipid metabolism disorders 33% 31%

Table 6: Comparison between DIAMOnD and RW 2 for two
diseases (R@1)

poor performances for methods based only on connectivity patterns
(DIAMOnD and RWR).

Then, we analyze the network sensitivity to parameters. First, we
found that increasing the number of layers of the neural network
(step 3 of the pipeline) does not improve results. Although more
experiments with different and more complex learners might be
needed, our intuition is that data quality - namely, incompleteness
and sparsity of features - is too low for deep methods to learn
regularities.

Considering the entire pipeline, only two parameters were found
to affect the performance: the dimension of embedding vectors and
the dimension of the window (context) used during the label em-
bedding phase. Figure 6(a) shows that a sufficiently high number of
dimensions are needed (> 100) Figure 6(b) shows that the best per-
formances are obtained with smaller left-right contexts (a window
size between 1 and 5). This confirms that the diameter of disease
modules (remember that disease modules are vaguely defined as
an "area" where nodes related to the same disease tend to reside) is
relatively small, in line with other studies, for example [1], stating
that the median distance between components in a module is almost
2.9, and [15] where the diameter of a disease module is estimated
to be 1.8 in the average. To conclude the robustness and sensitivity
analysis section, we tested several depths (1,2,3) of the classification
network. We found out that, contrary to the typical expectations,

increasing the number of hidden layers - up to 3 - decrease to 24%,
the performance of RW 2 on Diamond dataset.

6 HIGHLIGHTS AND CONCLUSIONS
The main advantage of RW 2, is the ability to discover specific com-
binations of connectivity and functional features that have a higher
probability of being found in the vicinity of a node related to a given
disease. Although RW 2 surpasses other compared systems in most
experimental settings, the performance measured in our experi-
ments appears to be highly dependent on the adopted PPI and the
specificity of considered disease categories. A larger number of
fine-grained disease categories, as shown in Table V, favours the
characterization of the disease-genes neighbourhood.

We also noticed that, in the majority of cases, the performance
of compared systems is quite low in comparison with the values
reported in the literature (either for specific diseases or specific
networks), showing that connectivity features alone do not allow
to discover disease modules in general.

This result is in agreement with a very recent study [1] where
the authors demonstrate that 90% of disease-related nodes do not
correspond to single well-connected components in the human
interactome network. Instead, nodes associated with a single dis-
ease tend to form many separate connected components/regions in
the network. In particular, the authors in [1] observe that "current
methods disregard loosely connected proteins when making pre-
dictions, causing many disease module components in the network
to remain unnoticed". Our study confirms this finding and demon-
strates that RW 2 is a better method to capture common features
of such sparse regions: first, the Random Watcher Walker jointly
captures connectivity and functional patterns in the vicinity of
nodes; second, label embeddings allow to optimize the combination
of features types that are more predictive of each disease. Note that
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Type DIAMOnD (DIAMOnD) HI-III (DIAMOnD) HI-III (Disgenet) HI-III (Phenorank)
Rewiring 38.79% (1.87%) 30.26% (2.42%) 7.27% (1.39%) 4.31% (1.42%)
Relabel 0.24% (0.15%) 0.60% (0.66%) 1.24% (0.55%) 0.62% (0.55%)
Both 0.30% (0.11%) 0.22% (0.34%) 0.71% (0.28%) 0.85% (0.32%)

Table 7: Robustness test: rewiring and relabeling the network

the notion of "vicinity" in embedding methods is more relaxed than
"connectivity", since the relative distance between two labels is not
fixed, but only constrained by the length of the context window.
As shown in Figure 6(b), we also found that performance degrades
when the window length exceeds ±5, which implies that "some"
vicinity among nodes related to the same disease does exist.
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