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Abstract: We predict disease-genes relations on the human interactome network
using a methodology that jointly learns functional and connectivity patterns
surrounding proteins. Contrary to other data structures, the Interactome is
characterized by high incompleteness and absence of explicit negative knowledge,
which makes predictive tasks particularly challenging. To exploit at best latent
information in the network, we propose an extended version of random walks,
named Random Watcher-Walker (RW 2), which is shown to perform better than
other state-of-the-art algorithms. We also show that the performance of RW 2

and other compared state-of-the-art algorithms is extremely sensitive to the
interactome used, and to the adopted disease categorizations, since this influences
the ability to capture regularities in presence of sparsity and incompleteness.
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1 Introduction

In the last decades, the evolution of medical knowledge has been supported by academic
research and technological developments, on the one hand providing a continuously growing
set of biomedical data and on the other hand revealing a complexity only perceived until now.
In this context, biological networks have become a central hub of multidisciplinary research
(Yu et al. [2013]), to address important challenges in both diagnostic and therapeutic aspects,
such as drug development and disease classification (Cheng et al. [2018], Wu et al. [2013],
Menche et al. [2015]). Barabási et al. [2011]:"Given the functional interdependencies
between the molecular components in a human cell, a disease is rarely a consequence of
an abnormality in a single gene, but reflects the disruptions of the complex intracellular
network". This complexity is hard to interpret using the traditional reductionist approach,
according to which a single disease cause can be identified decoupling the complex
biological or medical phenomenons in multiple components, consequently providing a cure.
Instead, keeping in mind the complexity means to analyse the interaction between multiple
components, which work dynamically in a system to pursue one or more purposes.

Network Medicine (Barabási et al. [2011]) (NM) is a relatively recent approach to
analyse the complexity of biomolecular structures. NM proposes to exploit the network
topology (e.g. the relations among biological entities) and the network dynamics (e.g.
the information flow across the network) to better understand the pathogenic behavior of
complex molecular interconnections, that standard reductionist (according to reductionism,
a single disease cause can be identified by decoupling the complex biological or medical
phenomenons in multiple components) approaches cannot detect. A central finding of NM
(Barabási et al. [2011]) is the following: "If a gene or molecule is involved in a specific
biochemical process or disease, its direct interactors might also be suspected to have some
role in the same biochemical process. In line with this ‘local’ hypothesis, proteins that are
involved in the same disease show a high propensity to interact with each other". Several
studies have been published in support of this hypothesis, such as reported by Vlaic et al.
[2018], Ghiassian et al. [2015], Silberberg et al. [2017] and others. It is important to stress
the potential impact of network methods to progress in this field. In fact, traditional ways
to assess the role of genes in diseases involve time-consuming and extremely expensive
(https://www.genome.gov/27541954/dna-sequencing-costs-data/) statistical studies based
on sequencing the DNA of a large number of patients affected by a given disease, known as
Genome-Wide association studies (GWAS). In this context, network science and machine
learning methods can be effective in reducing the number of alternatives to be explored in
clinical experiments.

The objective of this paper is to contribute to the problem of predicting disease-related
genes. We present a graph-based approach, based on an extended notion of random walks,
to extract topological information and functional properties of local sub-structures within
the human interactome network. Detected patterns are then used to train a machine learning
predictor. Our method advances the state of the art, by successfully comparing with the best
known system for disease gene prediction. In particular, the main contributions of this work
are:

1. we present a new framework for disease gene prediction based on a variant of random
walks, named Random Watcher-Walker (RW 2);

2. we show that exploiting connectivity properties alone is not sufficient to reliably
identify disease-related genes;
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3. we further show that, given high incompleteness of the interactome network, a careful
aggregation of diseases into categories might considerably help predictive methods.

2 Related work and Background Knowledge

2.1 Survey of Protein-Protein Interaction (PPI) prediction methods

Recent research fields such as System Biology and Network Medicine (NM) (see Barabási
et al. [2011]) has led to new approaches integrating the so called -omics fields of study
(genomics, proteomics and metabolomics) and network science. In these studies, complex
physical and structural interactions between molecules are modeled as a graph structure,
called interactome. The driving idea of NM is that the study of network topology and
dynamics can accelerate the discovery of new biological interactions and pathways as noted
by Chan and Loscalzo [2012], which in turn will drive progress on disease treatments and
personalised medicine. The broader aim of the NM is to study and expands knowledge in the
medical and biological domain, using computational methods to leverage the information
embedded into the biological networks or databases. A typical challenge, in the NM domain,
is to expand and organise biological information of the interactomes, such as the Protein-
Protein Interaction (PPI) network (an undirected network, where nodes are proteins, and
edges express physical interactions among them). This task is particularly crucial because
this kind of networks are currently suffering from many issues:

• Incompleteness: it is estimated that only 20-30% of existing interactions have been
discovered as noted by Venkatesan et al. [2009].

• Reliability: although many protein-protein interaction datasets are available in the
literature (see Section 3), relationships are not fully reliable, unless experimentally
tested on multiple assays. Only few recent experimental efforts are based on this idea,
like HI-III-19 (see Katja and et al. [2019]).

• Negative Knowledge: when a relationship between two biological entities is not
present, there is no assurance if it actually does not exist or if it is still unknown. Several
empirical methods have been proposed in literature to simulate negative knowledge.
Unfortunately, as discussed by L et al. [2018], training and testing with these negative
datasets may significantly overestimate performances. Despite this, negative sampling
is commonly used in many studies (e.g., PhenoRank Cornish et al. [2018]).

The characteristics of interactome networks highlighted above, cause, many commonly
used, computational methods or graph-mining methods to be ineffective. For example, An
et al. [2009] and Ghiassian et al. [2015] shows that community detection algorithms and
centrality measures fail to identify relevant structures, because of incompleteness. For the
reasons mentioned above, the interest of scientists to solve NM challenges remains high,
and the growing interdisciplinary effort gives hope for an acceleration of results in this field.

From a higher perspective, a challenge of the NM domain consists of solving a predictive
task where the goal is to discover the correlation of a biological entity to a specific class or
its association with other biological entities. In this work, we are concerned with a specific
predictive task - the Disease Gene Prediction (DGP) - where the involvement of a particular
protein/gene with one or more diseases must be suggested.
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DGP is a relevant, but still open, research topic, since, as pointed before, the genetic bases
of diseases are largely unknown. Currently, only 10% of genes have a known association
with some disease (Barabási et al. [2011]). Genome-Wide associations studies (GWAS)
have led to the collections of such associations in databases, like OMIM (Hamosh et al.
[2005]) and DisGenNet (Piñero et al. [2017]). However, as mentioned in the introduction,
GWAS studies are very expensive and labor intensive. Several PPI-based computational
approaches have been presented in the literature to solve the DGP problem. Barabási et al.
[2011] have grouped them in the following three categories:

• Linkage Methods: Linkage is the “tendency for genes and other genetic
markers to be inherited together because of their location near one another on
the same chromosome" (https://www.medicinenet.com/script/main/
art.asp?articlekey=4166). Linkage methods are based on the idea that genes
associated with a given disease or disease category are often in a given linkage interval
(the chromosomal location falls within one or more "disease loci"), and this information
can be used to restrict the number of candidate genes for a given disease. Supposing
that D is the set of all the diseases, and d ∈ D is a disease, then let be V d ⊆ V the set of
nodes (genes) in the linkage interval of d. From the Linkage methods perspective, V d

is the set of candidates among which the genes related to disease d must be predicted.
Further, let be D̂ ⊆ D, a set of diseases which are functionally similar to d ( i.e. D̂ can
be seen as a disease category), then VD̂ are the set of genes which are already known
to be related with D̂. One possible approach, as proposed by Oti et al. [2006], is to
predict the disease-gene association among the candidates V d and those in the direct
neighbourhood of VD̂. The main problem with linkage methods is that identifying
the causal genes at disease loci is often difficult, as noted in Cornish et al. [2018]
and furthermore, the co-occurrence of genes in the same chromosomal location is a
probable, but not a necessary, condition.

• Diffusion Methods: the majority of these methods, like those proposed by Vanunu
et al. [2010], Köhler et al. [2008], Wu et al. [2008], Li and Chandra Patra [2010], are
still based on linkage intervals to reduce the number of candidate genes for a given
disease, but rely on more complex connectivity approaches to filter candidates. For
example, in order to find novel disease-gene candidates, Köhler et al. [2008] introduces
random walk with restart (RwR), starting from genes known to be associated with a
given disease category. RwR and phenotypic information are also used in a recently
published method, PhenoRank (Cornish et al. [2018]). PhenoRank does not rely on
linkage intervals to reduce candidates, but rather it exploits the phenotypic similarity
of an input disease (query disease) with other diseases. The similarity values are used
to score the nodes of a PPI network, and these scores are then propagated across the
network, so that genes that interact with many high scoring genes are also scored highly.
To avoid bias induced by the fact that less studied genes are less connected within the
PPI network, simulated sets of phenotype terms are used to calculate, for each gene,
the probability of observing a gene score at least or great as the one actually observed.

• Module-based Methods: the approaches proposed by Ghiassian et al. [2015] and
Silberberg et al. [2017] are solely based on network connectivity properties. The
hypothesis is that candidate genes belonging to the same neighbourhood (or module)
are more likely to be involved in the same diseases. Note that the notions of
"neighbourhood" and "module" are vague here, and standard community detection
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algorithms do not work. To have an idea of how a disease module looks like see
figure 3. Both approaches start with a given disease d (or a disease category), consider
the set of genes known to be associated with d - the initial "disease module" - and
expand the module by exploiting the structure of the network. The main idea of
Ghiassian et al. [2015] (DIAMOnD) is based on the use of a connectivity significance
measure, designed to take advantage of the weak interconnection properties of the
interactome. Using this metric, DIAMOnD first generates a connection ranking for
each node, with respect to a chosen disease module. DIAMOnD works by iteratively
expanding a single disease module with the first ranked node identified in each
iteration. Unlike DIAMOnD, Gladiator (Silberberg et al. [2017]) considers multiple
disease modules simultaneously. Gladiator is based on the intuition that diseases with
common phenotypes (common sets of symptoms) are also likely to share molecular
mechanisms. In order to predict gene-disease relationships, Gladiator uses a simulated
annealing algorithm that considers both information on phenotypic similarity and
protein interconnections. One of the problems with this approach is that phenotypic data
is not available for all genes (as noted by Cornish et al. [2018]), potentially influencing
the performance of this method.

In this paper, we present Random Watcher-Walker (RW 2), a graph-based method where
the association between gene and disease is discovered using an artificial neural network
predictor that exploit a new rich representation of the disease genes (or gene products).
RW 2 does not fall into the categorisation shown above, but belongs to a fourth category,
namely "Representation Learning", which exploits latent information and regular patterns
to detect candidate genes. As best as we know there are no other methods crafted to solve
the DGP problem, that fall in this category.

Moreover, differently from other methods surveyed in this Section:

• we do not rely on the linkage interval hypothesis;

• we do not consider diseases (or disease categories) one at the time, but jointly predict
all disease-related genes;

• we do not rely on heuristic methods to simulate negative knowledge, which, as already
noted, tend to artificially boost performance;

• rather than using ad-hoc PPIs and categorisations, we analyse the influence of different
PPIs and disease categorisations on systems’ performance.

Table 1 summarises the methods surveyed in this Section, by providing an overview
of the networks, features, and diseases databases used by the most relevant DGP methods,
including the one presented in this paper.

2.2 Background Knowledge

As stated before, NM is a cross-domains research field, where biology networks meet with
computational methods. More specifically, our method falls in the Representation Learning
category. In what follows, we present some background concepts for readers who are less
familiar with computational methods based on Machine Learning.

- Artificial Neural Networks (ANN), presented here in a simplified version, are
Machine Learning methods vaguely inspired by the human brain. The model of an artificial
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Work (Year, Name) Type Features PPI Networks Disease Databases
Oti et al. [2006] Linkage PPI HPRD OMIM

RwR Köhler et al. [2008] Diffusion PPI

BIND

OMIM
BioGRID

DIP
HPRD
IntAct

CIPHER Wu et al. [2008] Diffusion PPI

BIND

OMIM
HPRD
MINT

OPHID

RWRH Li and Chandra Patra [2010] Diffusion PPI HPRD OMIM

PRINCE Vanunu et al. [2010] Diffusion PPI HPRD OMIM

DIAMOnD Ghiassian et al. [2015] Module-based PPI Menche et al. [2015]
OMIM

PheGenI

GLADIATOR Silberberg et al. [2017] Module-based
PPI

Menche et al. [2015] Menche et al. [2015]
Phenotypes

PhenoRank Cornish et al. [2018] Diffusion

PPI BioGRID ClinVar
Phenotypes HI-II-14 OMIM

HPRD UniProtKB
IntAct

RW2 (our)
Representation

PPI
HI-III-19 DIAMOnD

Learning Menche et al. [2015] DisGeNET
PhenoRank

Menche et al. [2015] Dataset —–

BIGG
BIND Mottaz et al. [2008]

BioGRID OMIM
HPRD PheGenI
IntAct
KEGG
MINT

OPHID
PhosphositePlus

TRANSFAC

Table 1 Summary of disease prediction approaches and adopted datasets. Since many works use,
and refer to, the datasets described in Menche et al. [2015], to avoid repetitions we list in
the lower part of the table Menche’s et al. datasets.
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neuron - introduced by Rosenblatt [1958] as the building block of an ANN - is a mathematical
representation of a biological neuron, where the weighted sum of the inputs x, is passed
as an argument to non-linear function g, namely activation function (AF), to produce the
output value y, as described by equation y = g

(∑
i∈x(wi · xi)

)
and figure 1(a).

Σ g yw2x2

xn
wn

w1
x1

(a)

2nd Hidden Layer

Σ g'w'1,1x1 Σw''1,1 Σw'''1,1
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Σw'n,nxn Σw''n,n Σw'''n,n

y

1st Hidden Layer Output Layer
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g'

g''

g''

g''

g'''

g'''
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(b)

Figure 1 Schematisation of artificial neuron fig. (a), and multi-layer ANN fig. (b)

Moreover, several neurons can be aggregated together (using a layered topology as it is
shown in figure 1(b) ) to compose a more complex ANN, called multi-layer or deep artificial
neural network. In a deep artificial neural network (DANN), the outputs produced by the
neurons of the previous layer are used as inputs of the next layer. In the supervised learning
scenario, the input data x (i.e. an instance), the corresponding ground-truth value ŷ, and
an ANN are given. The learning process consists of deciding the weights of the ANN that
minimise, for every couple of input x and ground-truth ŷ, the difference |ŷ − y| (namely
error or loss function) between the produced output y and the ground-truth ŷ. One of the
most employed techniques to learn the weights and minimise the loss function is the back-
propagation algorithm presented by Rumelhart et al. [1986]. To conclude, even though there
are several activation functions, all of them are ideally non-linear and differentiable. The
nonlinearity is important to permit to learn the non-linear relationships hidden in the data.
Differentiability is required to utilise the back-propagation techniques employed to learn
the weights. The most popular activation function are ReLu, Tanh, Softmax and Sigmoid.
Nwankpa et al. [2018] provide a more comprehensive overview of the activation functions
used in deep learning applications.

- The Skip-Gram model is part of the Word2Vec models proposed by Mikolov et al.
[2013] in the field of the Natural Language Processing. It is designed by leveraging the
hypothesis that words in similar contexts (i.e. words close in the sentence) tend to have
the same or close meaning. The goal of Skip-Gram is to predict the context words y of a
given target word x. The core part of the Skip-Gram algorithm is made by an ANN trained
using as input x a word and as the ground truth y its context words. More specifically the
Skip-Gramm ANN is composed by one linear hidden layer and one softmax-based output
layer. The network depicted in figure 2 is trained using the Cross-Entropy Loss function.

3 Description of the Method

We predict disease genes using a graph-based methodology which jointly learns functional
and connectivity patterns surrounding proteins in the human interactome. Figure 3 shows
the network model G(V,E) where: nodes v ∈ V are proteins or gene products, and edges
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Figure 2 ANN architecture of the Skip-Gram model.
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Disease 3

Module of
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0
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1D1
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Figure 3 The network model considered in our work. Nodes are associated to one or more disease
modules, and this information is reported in a feature vector, as shown in the upper left
magnification.

e(i, j) ∈ E, i, j ∈ V are interactions. Coloured clusters are disease modules, that is, set of
disease-related genes (Barabási et al. [2011]). Each node (a protein or gene product), can
be associated with one or more disease module, as reported in its feature vector. Note, as
better shown in Section 4.2, that disease modules are not necessarily dense communities
but well-localised neighbourhoods that can overlap.

In our approach, each node v ∈ G is further described by a feature vector f(v),
a one-hot vector where a "1", in position k, indicates that a specific disease dk is

associated to a node v. Note that we consider mono and multi-factorial diseases (those
influenced by more than one gene). Furthermore, a gene might be associated to more than
one disease. Since our method requires that every node has at least one value in the feature
vector, we introduce an "empty" label, called wildcardW (see Figure 4), for all those nodes
that are not associated with any disease.

The methodology to predict disease-related genes can be summarised in three steps:

• Step 1: Random Watcher Walker: we collect network connectivity patterns using a
novel method, namely Random Watcher-Walker (RW 2) (exposed in Figure 4). The
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RW 2 walker, when landing on node v, "watches" the node features and selects one
disease label at random with uniform probability in those cells of the features vector
f(v) that are equals to 1. Next, it "walks" with uniform probability to one of v’s
neighbours. In this way, the visit made by the walker embodies both functional features
of traversed nodes (disease labels), and structural features (connected proteins in the
PPI). RW 2 can be seen as a label sequence generation where, ve denote the eth node
in the walk, and le denote the selected label of ve. The generation process satisfies the
following distribution:

P (ve = x, le = a|ve−1 = y) =


π(y, x) · σ(x, a) if (y, x) ∈ E and a is a label of x

0 otherwise

where π(y, x) is the normalised transition probability between nodes y and x, and
σ(x, a) is the normalised probability of selecting the node-label a in f(x).

Protein Disease protein Protein - Protein interaction Disease Module

L

G

N

B

C

F

D

I

K

J

Module of
Disease 2 (D2)

Module of
Disease 3 (D3)

Module of
Disease 1 (D1)

RW2 Walk

D2 D3 D3 W D2 D2 D1 D1

B M B C H M E L G

D2

D1

D2

D3 D3 W

D2

D1 D2 D1 D1

1

2

3
4

5 M

E

H

6

7

1 2 3 4 5 6 7

Produced Sequence

N
od

e 
Fe

at
ur

es

Figure 4 An example of the RW 2 step 1 applied on the network depicted in the left part of the
figure. The random watcher-walker start its visit from the node M (highlighted in green)
and after traversing node B,C,H ,E,L, end the visit in the node G (highlighted in red).

Our Random Watcher Walker approach is meant to exploit one relevant finding
of Network Medicine, the "modular" structure of diseases in the interactome: our
intuition is that random walks crossing nodes associated with disease modules that
are either close, or intersect each other in the interactome, should have similar label
subsequences, since they are extracted from a similar neighbourhood (Barabási et al.
[2011], Oti et al. [2006], Goh et al. [2007]). Given the "loose" notion of neighbourhood
implemented by random walks, similarity patterns might be captured even in the
presence of highly incomplete knowledge.
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• Step 2: Label Embeddings: collected network connectivity patterns are treated as
"contexts" for individual labels, (as shown in Figure 5) much in the same way as
sentences are contexts for individual words. Contexts are used to train a Skip-Gram
(Mikolov et al. [2013]) model and learn label embeddings (embeddings are "dense"
vector representations of feature labels, a very popular method used in Machine
Learning to cope with feature sparsity). Label embeddings are used to enrich the
multidimensional feature vector f(v) of each node of G: valued cells are replaced by
the respective embedding vectors, producing the enriched feature matrix F (v).

Colitis
Ulcerative Bile	Duct Cirrhosis Mycobacterium	

Infections Spondylarthropathies Multiple	
Sclerosis Vasculitis

LabelLeft Context Label Right Context Label

Figure 5 Example of ”context" for the disease category mycobacterium infections. In each step t of
the walk, a node vt is randomly selected among those connected with the previous node
vt−1, and next, a label is randomly extracted from f(vt). The figure shows a fragment of
the produced specific (double) random walk, centred on the label mycobacterium
infections, a disease label, extracted in step t of the random walk. Left context labels have
been extracted in steps t− 1, t− 2 . . . while right context labels have been extracted in
steps t+ 1, t+ 2 . . . .

.

• Step 3: Training: feature matrices F (v) are used to train a fully connected artificial
neural network (ANN) with Softmax activation function (depicted in Figure 6), for
predicting disease-gene associations . The system’s output is a (|D|+ 1)-dimensional
probability vector, where |D| is the number of considered disease labels and the
additional class label is UNK (unknown), to state absence of known disease relations
for a given node.

Most existing approaches require that all nodes in the graph are present during the training
of the system; these approaches are inherently transductive and do not naturally generalise
to unseen nodes. Instead, our method is intrinsically inductive leverages node feature
information to efficiently classify previously unseen data.

4 Evaluation Methodology

In this section we describe the dataset and features used for our experiments, the adopted
data transformation methodology, and the experimental strategies and setup.

4.1 Data Sources

PPI networks: Protein-protein interactions are mostly derived from databases curated from
the literature (hypothesis-driven), like those in IntAct (Orchard and et al. [2013]), BioGrid
(Stark et al. [2006]), MINT (Ceol et al. [2009]). These datasets may be affected by inspection
bias (also termed study bias or investigational bias as in Loscalzo et al. [2017]) since they
depend on the purposes of a study. In our experiments, however, we aim at using highly
reliable PPI datasets obtained via clinical tests (discovery-driven), although this may lead to
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figure/fullynn.pdf

Figure 6 Training the ANN with feature matrices

a higher sparsity. Finally, we do not use synthetic datasets, since these generated datasets can
hardly satisfy the statistical properties of the real interactome, and may lead to overestimated
performances. In our experiments, we used the following PPIs:

• DIAMOnD: For the purpose of comparison, we use the same interactome (PPI)
network used in DIAMOnD by Ghiassian et al. [2015], obtained by integrating several
data sources as described by Menche et al. [2015]. This network is one of the most
complete since includes most of PPI sources used by others DGP methods (see previous
Table 1), as: HPRD (Keshava Prasad et al. [2009]), BioGRID (Stark et al. [2006]),
IntAct (Orchard and et al. [2013]), MINT (Ceol et al. [2009]).

• HI-III-19: this dataset contains protein-protein interactions identified by high
throughput yeast two-hybrid screens applied systematically on pairwise combinations
of human protein-coding genes using high throughput yeast two-hybrid screens
(Discovery-driven or hypothesis-free). The quality of these interactions is further
validated in multiple orthogonal assays. The effect of inspect bias on this type of
dataset is negligible (Loscalzo et al. [2017]). HI-III-19 is publicly available on the
HuRI website (http://interactome.baderlab.org/about/).
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Table 2 shows some network statistics. We note that DIAMOnD is slightly more connected,
and larger, than HI-III-19. Another important difference is that nodes in HI-III-19 are
isoform proteins, while in DIAMOnD they are genes. More importantly, relationships in
HI-III-19 are considered highly reliable.
Disease categories: Disease categories with a genetic basis were obtained from DIAMOnD
Ghiassian et al. [2015] (disease-gene associations from OMIM by Hamosh et al. [2005] and
by PheGeni Ramos et al. [2014]), Phenorank (Cornish et al. [2018]) or Disgenet (Piñero et al.
[2017])(selected disease-gene associations from OMIM (Hamosh et al. [2005]), Uniprot
(Consortium [2017]), ClinVar (Landrum et al. [2016]), etc.). Table 3 shows the effect of
applying these three categorisation types to the DIAMOnD and HI-III-19 PPIs. Clearly,
since the DIAMOnD categorisation has been manually conceived for the DIAMOnD PPI,
all categories (70) map to some of the nodes of the network. Similarly to what the authors
do, we consider only diseases modules with at least 20 genes associated with it. When we
apply the same classification and dimensionality filter to HI-III-19, only 10 category labels
out of 70 have at least one module associated with it. DisGeNET categories with the same
dimensionality filter are 31 both in HI-III-19 and DIAMOnD. Finally, only 16 Phenorank
categories could be associated to HI-III-19 and 12 to DIAMOnD.

PPI network N. Nodes N. Edges Graph Density Connected Components Avg. Number of Neighbours

HI-III-19 8490 54495 0.0015 71 13
DIAMOnD 13458 141272 0.0016 89 20

Table 2 Network statistics

PPI network DIAMOnD Category Labels (CL) Disgenet CL Phenorank CL

HI-III-19
N. of Different Diseases 10 31 16

Diseases Nodes (%) 4% 14% 10%
N. of Disease-Node associations 479 1828 1008

DIAMOnD
N. of Different Diseases 70 31 12

Diseases Nodes (%) 11% 8% 5%
N. of Disease-Node associations 2843 1717 850

Table 3 Effect of using different disease categorisations on different PPIs

4.2 Topological Analysis of the Disease Module

We conducted an in-depth topological analysis of the adopted networks, to obtain insight
on the structure of disease modules. As modules, we used the induced subgraph of the
DIAMOnD and the DisGeNET disease categories, in the DIAMOnD and the HI-III-19
network. For every disease module induced subgraph we measured, following Agrawal et al.
[2018]: the number connected components, the number of proteins included in the largest
connected component, density, the conductance against the remaining graph, the distance
among disease nodes. According with Menche et al. [2015] we also measured the modular
separation of the disease modules.

We found that disease modules are fragmented over the PPI network. The median of
the connected components of each module is 21 (Avg. 27.2) in DIAMOnD and 34 (Avg.
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55) in HI-III-19. The median of proteins included in the largest connected component is
only 15% (Avg. 19%) in DIAMOnD and 2% (Avg. 2%) in HI-III-19. We also found that
disease modules are not densely connected, with a median density of 0.04 in DIAMOnD
(Avg. 0.05, the overall network density is 0.0016) and 0.005 in HI-III-19 (Avg. 0.006, the
whole network density is 0.0015).

Note that the majority (90%) of the disease modules has a density below 0.09 in
DIAMOnD and 0.01 in HI-III-19. Furthermore, the modules are somewhat well connected
externally, having a median conductance of 0.96 (Avg. 94%) in DIAMOnD and 0.98 (Avg.
98%) in HI-III-19. This kind of conductance values highlights that there are more edges
pointing outside the module than edges lying inside. Finally, the median distance between
proteins in the same disease module is 3.36 (Avg. 3.31) in DIAMOnD and 3.92 (Avg. 3.94)
in HI-III-19, and the modular separation of diseases is 56% in DIAMOnD and 49% in
HI-III-19.

These analysis show that disease modules, following a definition based on the notion
of the induced subgraph, do not express a topological structure (which is well connected
internally and has few edges pointing outside the cluster) which is instead typical of
communities, as defined in Network Science.

The absence of a topological structure in conjunction with the expressed modular
separation of the PPI, suggests that methods able to exploit the local structure of the modules
and to capture their overlaps, as is the case of RW 2, are more promising than those based
solely on a broader topological structure of the modules.

4.3 Data Transformation

Figure 7(a) shows, for each node v of the interactome, the enriched multidimensional feature
matrix F (v) (left) and the corresponding ground-truth output vectors D (right) to be used for
training. Coloured cells in F (v) represent embedding vectors associated to valued feature
labels in the original f(v), while white cells are zero vectors. The (|D|+ 1)-dimensional
ground-truth vector D has the ith cell equal to 1 if the node is known to be associated to
the corresponding disease d ∈ D. The last cell of this vector is 1 if no diseases are known
to be associated with the node.

0 0 0 11°

0 0 1 02°

0 1 0 03°

0 1 1 04°

Instances Class Labels

Diseases Diseases + Unk

1 0 0 05°

Diseases Diseases + Unk

(a)

0 0 0 11°

0 0 1 02°

0 1 0 03°

0 0 1 04a°

1 0 0 05°

Instances Class Labels

Diseases Diseases + Unk

0 1 0 04b°

(b)

Figure 7 Feature matrix with ground-truth vectors fig. (a), and their modified version used for the
learning phase fig. (b)

The dataset in Figure 7(a) cannot be used for training, because the ANN would trivially
learn that if a disease vector is valued in F (v), then the corresponding cell of the output
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should be 1. To avoid trivial learning, we train the ANN using modified feature matrices,
as shown in Figure 7(b).

1. If a node v is known to be related to a single disease d, Dv : {d}, |Dv| = 1 , then the
corresponding embedding vector from the feature matrix F (v) is replaced with a zero
vector. For example, nodes 2), 3) and 5) of Figure 7(a) are modified as in Figure 7(b).
Note that in this way a node with no valued cells in the disease dimension (instances
1 and 2 of Figure 7(b)), can either be "unknown" - which corresponds to a 1 in the
last cell of the ground-truth vector - or known to be related with one disease. Only
connectivity properties may allow to distinguish between these cases;

2. If a node v is known to be related to m diseases Dv : {d1, . . . , dm}, |Dv| = m , then
its feature matrix is duplicated into m matrices. Each duplicated matrix is associated
to only one disease dk ∈ Dv . In each duplicated feature matrix F (v)k we replace the
corresponding embedding vector of the associated disease dk with a zero vector, and
we keep only the 1 associated with dk in the related ground-truth vector. For example,
node 4 in Figure 7(a) is duplicated in 4.a and 4.b in Figure 7(b). In this case the ANN
is encouraged to learn also from co-morbidities.

4.4 Experimental Setup

The dataset transformed as in Figure 7(b) is used to train the ANN with 80-20% train-test
split and then averaging on 10 experiments. Tables 4 and 5 show the system parameters for
our best experiment, when using DIAMOnD PPI and categories. Sensitivity to parameters
is discussed in Section 5.

Random Walk Parameter Value

Label Embedding Length 300
Walk Length 20
Number of random walks per node 300
p 1
q 1
Skip-Gram context window 3
Skip-Gram Epochs 10

Table 4 Best RW 2 parameters.

ANN Parameter Value

Hidden Layer 0
Activation Function Softmax
Loss Binary Cross-entropy
Optimiser Adam
Batch Size 100
Epochs 5

Table 5 Best ANN parameters.
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5 Experiments

5.1 Comparison with other methods

Given the previously outlined characteristics of biomedical data, evaluation measures such
as precision, accuracy and f-score are ineffective, since there is no assessed experimental
method to create negative examples. In line with other works (Ghiassian et al. [2015],
Silberberg et al. [2017]) in this domain, we use Recall@k, the fraction of correctly predicted
items at rank k. Note that, since reliable knowledge on negative interactions is not available,
measures such as precision and AUC cannot be used. In all our experiments, we set the
k value of Recall@k to 1, since as explained in Section 1, the intended use of network
methods in medicine is to exploit the results with the highest confidence, to narrow the
scope of expensive and labor intensive clinical tests. We compare our system with:

1. A baseline method which uses only functional information, i.e. the feature vectors f(v)
without label embeddings. This corresponds to exploiting only functional (feature)
similarity.

2. DIAMOnD, which is commonly considered the state of art and most cited study
on disease gene prediction (see Section 2). DIAMOnD exploits only connectivity
information.

3. RWR (We used the following implementation https://github.com/
TuftsBCB/Walker) (Random Walks with Restart) (Köhler et al. [2008]) that, like
for DIAMOnD, uses only connectivity information. RwR is commonly used as a
comparison in the recent literature on DGP.

Note that we do not compare with Phenorank since it is a data-dependent algorithm. In
order to rank the genes in the network, it needs to compute similarities between diseases
and mouse mutants genes, exploiting their common phenotypes. In this context, Phenorank
works only with specific datasets of mouse mutants and phenotypes making it hard to re-use
these data on a new network of proteins or genes.

For all the above listed methods, during the training phase, we remove 20% of the
information concerning disease-node relationships and use these data for testing. Each
experiment is repeated 10 times with different splits of the learning and test set. Next, we
compute the Recall@1 and average over all folds.

Note that computing Recall@1 for DIAMOnD is not straightforward. In DIAMOnD
evaluation experiments, described in Ghiassian et al. [2015] , diseases are considered one at
the time. For each disease d, they remove node-disease associations from a given fraction
of nodes N ′d among those known to be related with d. Next, they apply an iterative method
in which, at each iteration, they add a new node n (the most likely node among those
considered) to the current set of nodes believed to be related to d. In their paper, the authors
perform 200 iterations and lastly they compute the recall, i.e. the fraction of disease nodes
retrieved by their method, among those (N ′d) that were initially removed. Although the
authors do not explicitly set/report a k value for the Recall, we can assume that setting k=1
for their system is an upper − bound of the real system performances. In our experiments,
we use the software made available by the authors, and adopt exactly the same iterative
methodology, removing 20% of disease-node associations, like for the other compared
methods.

The results of all comparative experiments are shown in Table 6.
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Methods Datasets used for PPI and disease categories
DIAMOnD (DIAMOnD) HI-III-19 (DIAMOnD) HI-III-19 (Disgenet) HI-III-19 (Phenorank)

RW 2 40.97% (0.90%) 33.29% (1.12%) 7.56% (0.71%) 4.87% (0.73%)
Baseline 0.26% (0.24%) 0.01% (0.36%) 0.47% (0.43%) 0.03% (0.57%)
DIAMOnD 14.05% (1.32%) 4.99% (1.46%) 3.38% (1.34%) 6.06% (2.06%)
RWR 22.29% (1.34%) 5.76% (1.71%) 3.80% (0.96%) 5.03% (2.79%)

Table 6 Macro Recall@1 and standard deviation over 10 folds.

Table 6 shows variable performance depending mainly on the combination of PPI
and disease categorisation adopted: not surprisingly, all systems perform better on the
DIAMOnD PPI when using DIAMOnD category labels, since this classification is more
fine-grained and has been manually curated by medical experts specifically for this PPI
(in fact, as shown in Table II when applied to HI-III-19, only 10 out of 70 defined disease
categories could be mapped onto the PPI). We further observe that:

1. Contrary to DIAMOnD and RWR,RW 2 exploits both node attributes and connectivity
features, which systematically results in better performances; however, when fewer, or
more coarse disease categories are used (as in columns 2-4), RW 2 reduces its ability
to retrieve context-dependent differences in the neighbourhood of a disease-node, and
its advantage over the other connectivity-based methods is reduced (or even lost, as in
column 4);

2. Using only similarity of feature vectors f(v) (the Baseline method) does not allow
to learn regularities, which is motivated by the high incompleteness and sparsity of
available features. In other terms, co-morbidity alone is an extremely weak predictor
of disease-genes;

3. As also demonstrated in Agrawal et al. [2018] RwR does not perform worst than
DIAMOnD, on the contrary, it seems to work better especially in the experiment of
column 1;

4. In general, performances of all systems are much lower than claimed in the respective
papers: as already discussed, these methods use negative sampling (except for
DIAMOnD) that appears to artificially boost performances.

Concerning DIAMOnD, we remark that in Ghiassian et al. [2015] the reported Recall
is higher, but limited to two diseases, lysosomal storage diseases and lipid metabolism
disorders, that show the higher density of the respective modules. For the purpose of
completeness, Table 7 compares RW 2 and DIAMOnD on these very same diseases.
Furthermore, Silberberg et al. [2017], in an experiment considering all diseases (on a slightly
different dataset), reported that DIAMOnD was "able to recover 13.3% of the removed
associations", which in line with the performance value (14%) in Table 6.

Disease Module RW 2 DIAMOnD

lysosomal storage diseases 85% 53%
lipid metabolism disorders 33% 31%

Table 7 Comparison between DIAMOnD and RW 2 for two diseases (R@1)
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(a) Performance as a function of the dimension of
embedding vectors.

(b) Performance as a function of the dimension of Skip-
gram context window.

Figure 8 Sensitivity analysis (DIAMOnD PPI and DIAMOnD categories)

5.2 Sensitivity analysis

Finally, we analyse the network sensitivity to parameters. First, we found that increasing
the number of layers of the neural network (step 3 of the pipeline) does not improve results.
Although more experiments with different and more complex learners might be needed,
our intuition is that data quality - namely, incompleteness and sparsity of features - is too
low for deep methods to learn regularities.

Considering the entire pipeline, only two parameters were found to affect the
performance: the dimension of embedding vectors and the dimension of the window
(context) used during the label embedding phase. Figure 8(a) shows that a sufficiently high
number of dimensions is needed (> 100) Figure 8(b) shows that the best performances are
obtained with smaller left-right contexts (a window size between 1 and 5). This confirms
that the diameter of disease modules (remember that disease modules are vaguely defined
as an "area" where nodes related to the same disease tend to reside) is relatively small, in
line with other studies, for example Agrawal et al. [2018], stating that the median distance
between components in a module is almost 2.9, and Menche et al. [2015] where the diameter
of a disease module is estimated to be 1.8 in the average.

6 Discussion and Concluding Remarks

The main advantage of RW 2 appears to be its ability to discover specific combinations of
connectivity and functional features that have a higher probability of being found in the
vicinity of a node related to a given disease. Although RW 2 surpasses other compared
systems in most experimental settings, the performances measured in our experiments
appear to be highly dependent on the adopted PPI and the specificity of considered disease
categories. A larger number of fine-grained disease categories, as shown in Table V, favors
the characterisation of the disease-genes neighbourhood.

We also noted that, in the majority of cases, the performances of compared systems
are quite low in comparison with the values reported in the literature (either for specific
diseases or specific networks), showing that connectivity features alone do not allow to
discover disease modules in general. This is also demonstrated by the results of Section 4.2,
dedicated to the analysis of disease modules.

This result is in agreement with a very recent study Agrawal et al. [2018] demonstrate
that 90% of disease-related nodes do not correspond to single well-connected components in
the human interactome network. Instead, nodes associated with a single disease tend to form
many separate connected components/regions in the network. In particular, Agrawal et al.
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[2018] observe that "current methods disregard loosely connected proteins when making
predictions, causing many disease module components in the network to remain unnoticed".
Our study confirms this finding , and demonstrates that RW 2 is a better method to capture
common features of such sparse regions: first, the Random Watcher Walker jointly captures
connectivity and functional patterns in the vicinity of nodes; second, label embeddings allow
to optimise the combination of features types that are more predictive of each disease. Note
that the notion of "vicinity" in embedding methods is more relaxed than "connectivity",
since the relative distance between two labels is not fixed, but only constrained by the length
of the context window. As shown in Figure 8(b), we also found that performance degrades
when the window length exceeds ±5, which implies that "some" vicinity among nodes
related to the same disease does exist.
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