

http://territoriaperti.univaq.it

FONDO TERRITORI LAVORO E CONOSCENZA CGIL, CISL, UIL

Deliverable D7.1

Territori Aperti: Tecniche auto-
matiche di raccolta e preparazione
dei dati

Project Title : Territori Aperti

Deliverable Number : D7.1

Title of Deliverable : Territori Aperti: Tecniche automatiche di raccolta e
preparazione dei dati

Nature of Deliverable : Report, Other

Dissemination level : Public

Licence : –

Version : 0.1

Contractual Delivery Date :

Actual Delivery Date :

Contributing WP : WP1 WP3

Editor(s) : Antinisca Di Marco (UNIVAQ), Amleto Di Salle (UNIVAQ),
Giordano d’Aloisio (UNIVAQ)

Author(s) : Antinisca Di Marco (UNIVAQ), Amleto Di Salle (UNIVAQ),
Giordano d’Aloisio(UNIVAQ)

Reviewer(s) : Antinisca Di Marco (UNIVAQ), Amleto Di Salle (UNIVAQ),
Giordano d’Aloisio (UNIVAQ), Giovanni Stilo (UNIVAQ)

Abstract
This deliverable describes the goal, the architecture and the V1 implementation of TA-Analytics, a
system for collecting and analyze Open Data.

Keyword List
Open Data, Data Analytics, Data Collection, Data Wrangling, Business Intelligence, Open Repository

Territori Aperti
III

Territori Aperti
IV

Glossary, acronyms & abbreviations

Item Description

D.I. Data Importer

D.A.V. Data Analytics and Visualization

B.I. Business Intelligence

T.A. Territori Aperti

Territori Aperti
V

Territori Aperti
VI

Table Of Contents

List Of Tables . IX

List Of Figures . XI

1 Introduction . 1

2 System Architecture . 3
2.1 Functional and Non-Functional Requirements . 3

2.2 Use Cases. 5

2.3 System Components and Interactions . 6

3 TA-Analytics implementation version 1.0 . 9
3.1 Data Importer . 9

3.1.1 SDMX Protocol . 11

3.2 Data Analytics and Visualization . 14

3.2.1 Metabase . 15

3.2.2 Apache Superset . 15

3.2.3 Knowage. 15

3.2.4 Systems comparison . 15

4 Conclusions and future works. 19

Bibliography . 21

Territori Aperti
VII

Territori Aperti
VIII

List Of Tables

Table 2.1: Functional Requirements . 4

Table 2.2: Non-Functional Requirements . 4

Table 3.1: Business Intelligence systems comparison . 16

Territori Aperti
IX

Territori Aperti
X

List Of Figures

Figure 2.1: TA-Analytics Use Case Diagram . 6

Figure 2.2: TA-Analytics Component Diagram. 7

Figure 2.3: Import Open Data Sequence Diagram. 8

Figure 2.4: Create Dashboard Sequence Diagram . 8

Figure 3.1: TA-Analytics V1 Components Overview . 9

Figure 3.2: Data Importer Components . 10

Figure 3.3: Data Importer Sequence Diagram. 11

Figure 3.4: SDMX Metamodel. 12

Figure 3.5: Dataset components . 12

Figure 3.6: Generic Format Dataset . 13

Figure 3.7: Structure Specific Dataset . 13

Figure 3.8: Compact Dataset . 14

Figure 3.9: Cross Sectional Dataset . 14

Figure 3.10: Example of informative dashboard . 17

Figure 3.11: Example of dashboard for the download of a dataset . 17

Territori Aperti
XI

Territori Aperti
XII

1 Introduction

One of the key goals of the Territori Aperti (TA) project is to manage and extract knowledge from several
sources of information. Thus, being able to collect, process and analyse different types of data is a
grounded aspect of it.

From an abstract point of view, to achieve the aforementioned result, a dataset must be processed
and properly presented to the end-user.

Processing a dataset implies manipulation of it by applying various techniques as - but not limited to
- data cleaning, data wrangling and sampling. Furthermore, many analysis techniques - as machine
learning or descriptive analysis - can be applied at any stage of the processing pipeline. The results
of the processing and analysis phases can be presented to the user using a proper succinct graphical
representation (plots, charts and diagrams).

Data are heterogeneous in their nature, in terms of content and of sources, making it difficult to apply
the process, described above, in a standardised way. Moreover, to provide useful information to their
users, the content provider (mainly public organisations) are continuously updating the data making the
depicted scenario much more difficult.

To allow TA project users to access the available data, analyze and visualize them, we present the
TA-Analytics platform, a system for collecting and analyzing Open Data coming from different open
repositories. We like to remark that TA-Analytics follows the principles of Open Science at the basis of
Territori Aperti. Moreover, the TA-Analytics allow the user to visualise the gathered data using different
types of charts and finally share their analysis with other users (as citizens or public administrations
which are not directly involved in the TA project).

TA-Analytics also have the capability to interact, on a periodic base, with several open repositories,
which exposes their data by web services. Lastly, users are able, accordingly with the Open Science
principles, to upload their own open datasets to share them with the other platform users.

This report is organized as follows:

• Chapter 2 describes the overall architecture, his components and use cases and the functional
and non-functional requirements considered for building the system.

• Chapter 3 describes the first implementation of the system. Each section is dedicated to a par-
ticular component and describes the technologies and the design decision taken.

• Chapter 4 concludes the document describing the future steps and improvements for the system.

Territori Aperti
1

Territori Aperti
2

2 System Architecture

TA-Analytics in its essence can be seen as a system made by two macro components that performs
respectively two macro tasks:

1) Download data from external open source repositories and make them available to the users.

2) Allow also non-expert users to manipulate the data and extract information from them in an easy
way.

This tasks contain several critical aspects that have to be considered for the application to really be
useful and satisfy the users needing. So first of all we have made an analysis of the requirements in
order to better organize the development of the system.

In the next sessions we will describe more in detail this process starting from the Functional and
Non-Functional Requirements (Section: 2.1) and the relative Use Cases (Section: 2.2) of the system to
then describe his architecture and his macro components (Section: 2.3).

2.1. Functional and Non-Functional Requirements

Table 2.1 describes the Functional Requirements of the system. Requirements from FR1 to FR3 con-
cern the process of downloading Open Data from different web repositories and make them always
updated and available to the users. Requirements from FR4 to FR6 instead concern the other macro
task of TA-Analytics that is the analysis and visualization of data by the users. Users must be able to
use the data imported by system and must be able to share their analysis to other users and in other
platforms. They must also be able to upload their own Open Data and share them with other users thus
reflecting the principle of sharing knowledge that is at the basis of Territori Aperti.

Table 2.2 describes instead the Non-Functional Requirements of the system. NFR1 exposes a very
critical requirement since all the users must be able to do analysis and manipulate the data without
knowing specific languages for data manipulation or knowing at most only the basis. NFR2 and NFR3
concern instead the data importing process. Since this process is done automatically, the system must
be able to handle any kind of error that could happen in a proper way and must be able to manage any
kind of dataset of any format and easily integrate new data sources.

Territori Aperti
3

FR1 The system must be able to interact with different
web services related to Open Data repositories for
downloading the data.

FR2 The system must be able to update periodically
the data he gets from open repositories in order
to make them always updated.

FR3 The system must store the downloaded data in or-
der to make them available to the users.

FR4 The system must allow the users to make analysis
and charts with the data at its disposal.

FR5 The system must allow the users to create inter-
active dashboards with charts and analysis and to
share them with other users.

FR6 The system must allow the users to upload their
own datasets in the form of CSV or XLS files and
share them with the other users.

Table 2.1: Functional Requirements

NFR1 The system must be easy to use also for non-
technical users.

NFR2 The system must be able to automatically recover
in case of an error during the automatic download
of data.

NFR3 The system must be able to download and man-
age datasets of different formats and easily inte-
grate new data sources.

Table 2.2: Non-Functional Requirements

Territori Aperti
4

2.2. Use Cases

Figure 2.1 describes the possible use cases of the system. We have three kinds of actors: two human
and one non-human. Talking about human actors we distinguish between Registered User and Non-
Registered User: for Registered User we intend any user that is actually registered (via a proper au-
thentication system) in the application and can access his functionalities, instead with Non-Registered
User we identify any other kind of user that is not registered in the system. Only Registered Users can
create dashboard and analysis: creating a dashboard includes the process of creating any kind of data
visualization (for example graphs or tables) that will then be included inside the dashboard; all the data
visualization models, for a specific dataset, has to be included inside a dashboard in order to be shared
with other users. For this reason the Create Dashboard use case includes the Create Data Visualization
use case and a Registered User must always pass through the Create Dashboard use case in order to
create a data visualization. Instead a Registered User does not always have to a create a dashboard
in order to create an analysis, in fact a user can create an analysis and put the results inside another
dataset that will then be shared to other users without inserting it inside a dashboard. For this reason
the Create Analysis use case is not included in the Create Dashboard use case but is only extended
by it indicating that not always an analysis is required to create a dashboard. A Registered User can
also upload his own datasets and share them with other Registered Users and can download datasets
available to him from the system.

A Non-Registered User instead can only use public dashboards created by Registered Users: a public
dashboard is a specific kind of dashboard that can be accessed also outside the system embedding
it for example in other applications or web sites. For using a dashboard we mean to watch the data
representation in it and eventually filter the data if some kind of filtering is present in the dashboard. A
Non-Registered User can not change the content of a dashboard in terms of charts and datasets inside
it. From a public dashboard is also possible (if allowed) to download the datasets used in it, so the Use
Public Dashboard use case extends the Download Data use case. Obviously a public dashboard can
also be used by a Registered User.

Finally there is an actor representing the Data Importer (D.I.) application which periodically downloads
data from different open repositories and stores them inside the system. We decided to treat the D.I.
app as an actor to highlight the process of automatic download and storage of Open Data.

Territori Aperti
5

Figure 2.1: TA-Analytics Use Case Diagram

2.3. System Components and Interactions

The main components of the system are shown in figure 2.2. As can be seen, the system is made by
two principal components which interacts with the interfaces exposed by the others.

The first is the Data Importer (D.I.) component which is the one responsible of downloading periodi-
cally datasets from different Open Data repositories interacting with the services exposed by them. The
component has to be able to interact with different web services using different protocols if necessary.
The D.I. application interacts also with a database for storing the imported data. Figure 2.3 describes
more in detail the process of importing open data performed by the component: first the D.I. makes a
request to all the data repositories requesting their datasets, then, after the data repositories have sent
their data, it performs some data processing if needed in order to finally store the data in a database.
This process is repeated periodically in order to have always the datasets updated.

The second main component is the Data Analytics and Visualization (D.A.V.) application which also
interacts with the database to retrieve the downloaded datasets. The D.A.V. component is the entry
point for the end user to all the datasets and services offered by the application, allowing him to build
analysis, charts and dashboards, to upload his own datasets and to download the datasets available to
him. This component will offer to the users a graphical interface to interact with the data, allowing them
to make simple analysis abstracting from the data manipulation languages used by the application.
Figure 2.4 describes the process of creating a dashboard by a Registered User: first the user makes
a request to the system for creating a dashboard, then the application asks to user to select a specific
dataset to be included inside the dashboard and, after querying it from the database, asks to the user
which kind of visualization he wants to include inside the dashboard for this specific dataset. These two
processes (selecting a dataset and selecting a visualization) can be done several times, meaning that a
dashboard can include different datasets and for each of them different kinds of visualizations. Finally,

Territori Aperti
6

Figure 2.2: TA-Analytics Component Diagram

after the user has populated the dashboard with datasets and visualizations, he publishes it making it
available to the other Registered Users or, if the dashboard is public, also to Non-Registered Users.

This separation of concerns between the D.I. and D.A.V. components allows us to modify or com-
pletely change if necessary one of these components without affecting the behavior of the other ensur-
ing modularity and scalability to the system.

Territori Aperti
7

Figure 2.3: Import Open Data Sequence Diagram

Figure 2.4: Create Dashboard Sequence Diagram

Territori Aperti
8

3 TA-Analytics implementation version 1.0

This chapter describes the first implementation of TA-Analytics from a more technical point of view. An
informal overview is shown in figure 3.1. In this first release the system only retrieves data from the
I.Stat1 repository using the SDMX protocol (section 3.1.1) to interact with his web services. After it, the
Data Importer (D.I.) application stores the datasets into a SQL database. Since all the data managed by
the application are structured data, we decided in this first release to use a relational database instead
of a NoSQL one. Finally, there is the Data Analytics and Visualization (D.A.V.) app which is the entry
point for the end user to all the datasets stored by the application. With this component the user can
analyze the available data and build interactive dashboards which can then be exported and embedded
in other web applications. In the next sections we will describe more in detail the implementation of
these components and the design decisions made while developing them.

Figure 3.1: TA-Analytics V1 Components Overview

3.1. Data Importer

The Data Importer is the component responsible of retrieving periodically data from different open
repositories interacting with their web services. The web services with which the system can interact
can be multiple and heterogeneous in terms of implementations and protocols used so a lot of care has
been given to the development of an application able to interact easily with different external services
using different protocols and messages. The application has been built in Java using the Spring Boot
framework, which eases a component based developing approach and offers an easy integration with
external libraries and services. A more detailed overview of the internal components of the D.I. appli-
cation is shown in figure 3.2 while the entire batch process of downloading and store the datasets is
shown in figure 3.3. This process can be described with the following steps:

1http://dati.istat.it

Territori Aperti
9

http://dati.istat.it

Figure 3.2: Data Importer Components

1) The Url Reader component reads from the database the urls corresponding to the API calls that
has to be made to the I.Stat service in order to have the datasets.

2) The Data Downloader component uses these urls to make a remote call to the I.Stat service to
retrieve the datasets needed.

3) Since the datasets returned by the I.Stat repository are represented using the SDMX format, the
Data Processor component has the task of converting these data in a format that can be stored
inside a SQL database.

4) Finally the Data Writer component stores the processed data in the database.

The entire batch process has been implemented using Spring Batch which is a Spring sub-framework
designed to enable easily the development of robust batch applications, offering features like error
management, job restarting, job skipping, logging and so on [1].

The system has also a user interface from where an administrator can insert new urls corresponding
to new datasets or manually start the above process if needed.

Territori Aperti
10

Figure 3.3: Data Importer Sequence Diagram

3.1.1. SDMX Protocol

As mentioned before, for this first release the application interacts with the I.Stat repository, that is one
of the biggest open data repositories in Italy. I.Stat exposes a REST API for interacting with external
applications and data are sent using the SDMX protocol, which is a standard protocol for sending
statistical data.

Figure 3.4 shows the SDMX Metamodel. As can be seen from the picture, this model provides a
lot of components for modeling statistical datasets: the two most important are the Dataflow and the
Data Structure Definition (DSD) components which represent respectively the data and the structure
of a dataset. The Dataflows are grouped in different Categories and each Dataflow refers to a single
DSD. So, a Dataflow can have only one schema associated and must respect the constraint imposed
by that structure, instead a Data Structure Definition can be associated to more dataflows (for example
corresponding to different observations during the time). The DSD is made by different Codes and
Concepts which are grouped inside Code Lists and Concept Schemas. The Concepts are the attributes
of the dataset, while the Codes are a list of possible values that a Concept can have (e.g. the attribute
SEX can be a Concept of a DSD while Male and Female are the Codes related to that Concept). Finally,
there is the Provision Agreement, that is the contract made by the Data Providers (the organizations
that provide the datasets) to their clients regarding the dataflows they can provide. Each Dataflow is
identified by an ID and a version unique for his Data Provider.

Figure 3.5 describes more in detail the representation of information inside a SDMX dataset. A
dataset must reference to a DSD either directly or via a Dataflow or Provision Agreement. Logically a
dataset comprises Series and the Series comprises Observations. Observations are associated to a
Time Period for time series or to any other Dimension (e.g. geography) for non-time series. Attributes
can relate to the dataset, the Series, an Observation or to a Group. A Group is a partial series key i.e.
the value of one or more Dimensions comprising a sub set of the full key. Depending on the physical
format of the datasets the associations shown by the green lines can be either containers (e.g. Dataset
contains Series) or references (Series referenced the Dataset).

Territori Aperti
11

Figure 3.4: SDMX Metamodel

From https://metadatatechnology.com/

Figure 3.5: Dataset components

From https://metadatatechnology.com/

Territori Aperti
12

https://metadatatechnology.com/
https://metadatatechnology.com/

A dataset can be represented in different formats within the SDMX specification:

1) Generic Format (fig: 3.6):

There is a single XML schema that supports all datasets regardless of the Data Structure Defi-
nition (DSD) that defines the allowable content. This format is the most verbose of all the SDMX
formats.

Figure 3.6: Generic Format Dataset

From https://metadatatechnology.com/

2) Structure Specific (fig: 3.7):

Except for the TimeSeries variant of this format any one of or all of the Dimensions can be placed
at the level of the observation (thus supporting cross-sectional data) The TimeSeries variant of
this format mandates that this is TIME PERIOD. Multiple measures (specified in the Measure
Dimension) can be contained in the Observation. This is the most terse XML format for SDMX
data.

Figure 3.7: Structure Specific Dataset

From https://metadatatechnology.com/

Territori Aperti
13

https://metadatatechnology.com/
https://metadatatechnology.com/

3) Compact (fig: 3.8):

Supports Time Series only. This format is similar to the Structure Specific format where
TIME PERIOD is the Dimension associated at the level of the observation: the dataset contains all
of the Dimensions except TIME PERIOD and the TIME PERIOD is iterated with the observation
value at the level.

Figure 3.8: Compact Dataset

From https://metadatatechnology.com/

4) Cross Sectional (fig: 3.9):

Supports a non-time series representation of the data (though time can be present in the dataset).
The placement of the Dimension and Attributes (with the group, series, observation) is specified
in the DSD. This can even be a “flat” representation where all Dimensions and Attributes are
presented at the same level as the observation value. Multiple measures can be specified in the
DSD though this is rather complex, as the DSD must declare explicitly the measures and map
each to the relevant code list.

Figure 3.9: Cross Sectional Dataset

From https://metadatatechnology.com/

The D.I. application uses the SdmxSource [2] java library to interpret the XML messages sent back by
the repository regardless of their format and build his own domain model objects using the information
described in figures 3.4 and 3.5.

3.2. Data Analytics and Visualization

The Data Analytics and Visualization (D.A.V.) application gives access to the end user to the datasets
and services offered by the system. Requirements FR4, FR5 and FR6 from table 2.1 describes what
the application must do in order to satisfy the required needs: it must allow Registered Users to vi-
sualize the datasets with different types of charts and do different types of analysis with them, make
interactive dashboards shareable with also Non-Registered Users and upload their own datasets as
CSV or XLS files. Requirement NFR1 from table 2.2 imposes instead that the system must be easy to
use also for non-technical users, allowing them to make analysis knowing at most the basis of some
data manipulation languages.

Developing from scratch an application that satisfy these needs could be a daunting task, so we have
taken into account three different open source projects to be used: Metabase [3], Apache Superset
[4] and Knowage [5]. In the following sections we will briefly describe and compare them using the
requirements described above, other than their stability and maintenance, as evaluators.

Territori Aperti
14

https://metadatatechnology.com/
https://metadatatechnology.com/

3.2.1. Metabase

Metabase is an open source data visualization and analytics application, build in React and Clojure, with
a very intuitive user interface and an API that embeds SQL scripts inside Excel-like functions, giving to
the users the ability to write Excel-like formulas to analyze their data. It can be easily integrated with
an existing database and ships by default with many drivers already integrated. Although for simple
analysis the user does not have to know SQL since all can be done via his user interface, for more
complex analysis Metabase offers a good SQL editor with code completion and linting.

From the data visualization point of view, Metabase has quite few options for creating graphs and
dashboards, that can enough for simple analysis but not for more complex and advanced projects.

As an overall view, Metabase can be seen as a good data analytics and visualization app but can-
not be described as a real Business Intelligence tool since it misses some important and advanced
functionalities.

3.2.2. Apache Superset

Apache Superset is a software written in Python, first developed by the AirBnb company and now under
the Apache Software Foundation. It has a simple user interface which integrates an interactive widget
for simple analysis and a SQL editor for more complex queries and has quite different visualizations
options including 3D graphs, heatmaps, pivot tables and so on.

At the time this document has been written, the project is still under development and is not yet on a
stable release, so it has not been analyzed further.

3.2.3. Knowage

Formerly known as SpagoBI, Knowage is a Business Intelligence tool written in Java which gives to the
user the ability to build complete and advanced dashboard with different types of visualizations that can
be highly customized. Knowage has a very clear user role distinction: there are Administrators who
can manage everything of the application starting from the other registered users and their roles, to
the database connections and datasets creation, then there is the BI developer who has the ability to
create the connections between the system and different databases, to create the datasets that will be
available to the end users (with the possibility to restrict a specific dataset only to some users with a
specific role or authorization) and to create all the types of analytical documents starting from the simple
dashboard to more complex analytical documents made using engines like Birt or Olap. Finally, there
is the End-User who can access and analyze the datasets shared to him, upload other datasets from
CSV or XLS files and share them with other users and create analytical dashboards using the various
visualization options.

Differently from the other two solutions, the user interface of Knowage is not very intuitive and requires
a bit of knowledge of the environment to make full use of its features. Also, the abstraction from the
SQL language is not very high and often is required to write SQL scripts also for simple analysis. The
analytical editor is useful for combining different datasets and build very simple indexes but, as we used
it, we noticed some functionality bugs that prevent it to work better.

As an overall view, Knowage can be seen as a full Business Intelligence tool with many, also ad-
vanced, functionalities. Using Knowage users can build complete dashboards with different types of
information and analysis, although it is not very intuitive on the first approach and requires a basic
knowledge of SQL language.

3.2.4. Systems comparison

Table 3.1 compares Metabase and Knowage with respect to the requirements defined above, for each
requirement is then highlighted in green the application that better satisfies it. Please note that we

Territori Aperti
15

excluded Apache Superset from this analysis since it is still in development mode and so we felt that it
is not stable enough to be used in the system.

Requirement Metabase Knowage

FR4 Although the interface for making
analysis is very simple and intuitive, it
offers very few options for visualizing
the data and very low customization
options.

Has different types of visualization
options with a high customization and
offers the possibility to make ad-
vanced kind of analysis using analyti-
cal engines like Birt or QBE.

FR5 The dashboards can embed all types
of charts and analysis available in the
system and can be shared to Non-
Registered Users but do not offer any
type of interaction (e.g. filtering data,
download datasets, etc.).

Allows the creation of dashboards
that can be shared to Non-Registered
Users and offers different types of in-
teractions, e.g. filtering data, down-
load the displayed data, manipulate
graphs, etc.

FR6 Does not offers this functionality. Allows Registered Users to upload
CSV and XLS files and share them
with other Registered Users.

NFR1 Easy user interface and high abstrac-
tion from SQL for simple analysis.

User interface not very intuitive on the
first approach. A base knowledge of
SQL is required.

Table 3.1: Business Intelligence systems comparison

As the table shows Knowage satisfies all the Functional Requirements while the Non-Functional
Requirements are better satisfied by Metabase. The final decision has been to use Knowage for this
first release since the Non-Functional Requirement can be filled with a slight training about the system
and the basis of SQL while the lack of functionalities of Metabase would have affected the usefulness
of the system.

Figures 3.10 and 3.11 shows two examples of possibles dashboards that can be made using
Knowage 2. Dashboard 3.10 is an example of an informative dashboard showing the result of an analy-
sis made on a dataset collected by the application. In particular this dashboard shows the contribution
of the PIL from Abruzzo to the PIL from Italy and South of Italy and its variation over time. Dashboard
3.11 is instead an example of a dashboard for the download of a structured and pre-processed dataset.
Registered (and also Non-Registered if the dashboard is public) Users can freely download the data on
different formats and can use different filters on specific attributes. This type of dashboard can be very
useful to provide users with pre-processed data directly instead of raw data.

2The data displayed are Open Data collected from the I.Stat repository (http:\dati.istat.it)

Territori Aperti
16

http:\dati.istat.it

Figure 3.10: Example of informative dashboard

Figure 3.11: Example of dashboard for the download of a dataset

Territori Aperti
17

Territori Aperti
18

4 Conclusions and future works

This deliverable described the basic concepts, the main architecture and the first implementation of the
TA-Analytics system.

In its first stage we have defined the early architecture of the system in order to provide a core basic
set of service. A lot of effort has been given to the development of the Data Importer application and
to the processing of the SDMX messages due to their particular structure which makes very difficult
to parse the XML messages using a standard XML schema. The existence of a specific library for the
parsing of SDMX messages [2] helped us to solve this task.

The choice of a good Business Intelligence application as D.A.V. component was a tricky task as well,
since we needed to take account of the various Functional Requirements as well as the ease of use the
entire system. The availability of open source B.I. applications is wide and so we first had to filter the
ones satisfying most of the needed requirements, leading to the applications described in section 3.2.
After this first selection we then had to carefully analyze the functionalities of the selected applications
in order to find the one that best satisfies our requirements, as said in section 3.2.4.

Finally, the integration between the D.I. and D.A.V. components has been not so hard since they
share the same database (section 2.3) and so all the process has been reduced to connecting these
two components to a common database to give access to the same datasets.

The area of improvements for the next releases are manifold both for the D.I. and D.A.V. compo-
nents: about the first component one point is for sure the integration of more open repositories (and
correspondents web services) to the system as well as the improvement of the performances for pro-
cessing expecially large SDMX datasets. About the D.A.V. component instead future works will be the
improvement of the user interface as well as his easy of use and abstraction from the data manipula-
tion languages used and also the integration of the functionality of adding machine learning scripts and
custom charts to dashboards to enrich the overall analysis their expressive power.

Territori Aperti
19

Territori Aperti
20

Bibliography

[1] “Spring batch.” [Online]. Available: https://spring.io/projects/spring-batch

[2] K. Nicholls, “Sdmxsource: Metadata technology.” [Online]. Available: https://metadatatechnology.
com/software/sdmxsource.php

[3] “Metabase.” [Online]. Available: https://www.metabase.com/

[4] “Apache superset (incubating).” [Online]. Available: https://superset.incubator.apache.org/

[5] “Open source business intelligence - knowage suite.” [Online]. Available: https://www.
knowage-suite.com/site/

Territori Aperti
21

https://spring.io/projects/spring-batch
https://metadatatechnology.com/software/sdmxsource.php
https://metadatatechnology.com/software/sdmxsource.php
https://www.metabase.com/
https://superset.incubator.apache.org/
https://www.knowage-suite.com/site/
https://www.knowage-suite.com/site/

	List Of Tables
	List Of Figures
	Introduction
	System Architecture
	Functional and Non-Functional Requirements
	Use Cases
	System Components and Interactions

	TA-Analytics implementation version 1.0
	Data Importer
	SDMX Protocol

	Data Analytics and Visualization
	Metabase
	Apache Superset
	Knowage
	Systems comparison

	Conclusions and future works
	Bibliography

