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Abstract

With the rise of Data Science and Big Data in the last ten years, Data Science

workflows have become an essential tool for scientists, researchers, and industries.

The necessity to develop efficient Data Science systems starting from raw datasets,

concatenating different steps of data preprocessing, model selection, and model

evaluation thus becomes prominent. Over the years, several solutions have been

proposed to automate the creation of Data Science pipelines, most of them concerning

semantic aspects and characteristics of the input dataset. In addition, the quality of

these systems is usually measured using metrics that do not take into account several

crucial quality requirements, such as Bias and Fairness or Model Explainability.

In this thesis, we study Data Science workflows with the aim of identifying

properties that can be used to define Quality requirements and constraints of Data

Science pipelines. In particular, we focused on Bias and Fairness that in our opinion

are among the most critical characteristics that must be studied nowadays. First

of all, we analyzed the state of the art, identifying several definitions, metrics, and

methods existing in the Bias and Fairness literature. Then we deeply analyzed three

methods which allowed us to propose a new approach, the Debiaser for Multiple

Variables (DEMV) which is an extension of the established Sampling method. Finally,

we compare the proposed approach by comparing its performance with the established

bias mitigation methods. To do so we employed a set of well-known biased datasets

typically employed in the literature. The experiments have shown that Debiaser

for Multiple Variables (DEMV) is the preferable method used to improves Bias and

Fairness under certain conditions.



v

Contents

List of Figures viii

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Knowledge and Related Works 4

2.1 Overview of Scientific Workflow Management Systems . . . . . . . . 4

2.2 Approaches on automating Data Science workflows . . . . . . . . . . 6

2.3 Background knowledge on Bias and Fairness . . . . . . . . . . . . . . 8

2.3.1 Bias definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Definitions of Algorithmic Fairness and metrics . . . . . . . . 10

2.3.3 Methods for bias mitigation . . . . . . . . . . . . . . . . . . . 13

3 Context Definition 17

3.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Quality Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Data Science Workflow overview . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 Model Explainability . . . . . . . . . . . . . . . . . . . . . . . 26



Contents vi

4 Experimental analysis on Bias and Fairness 28

4.1 Selected datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Employed classic debias algorithms . . . . . . . . . . . . . . . . . . . 33

4.3.1 Reweighing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Disparate Impact Remover . . . . . . . . . . . . . . . . . . . 34

4.3.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Experimental comparison of classic debias algorithms . . . . . . . . . 39

4.4.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Datasets with a single protected attribute . . . . . . . . . . . 43

4.4.3 Overall considerations . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Debiaser for Multiple Variables . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Comparison with established methods . . . . . . . . . . . . . 56

4.5.2 Overall considerations . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusions and future works 64

5.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliography 67



vii

List of Figures

2.1 Bias Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Quality attributes influence . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Data Science Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Data Preprocessing workflow . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Model Selection workflow . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Model Tuning workflow . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Model explainability workflow . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Classification report of a bias classifier . . . . . . . . . . . . . . . . . 29

4.2 Example of 5-fold cross-validation . . . . . . . . . . . . . . . . . . . 32

4.3 Distribution of weights . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Application of DIR to numerical variable . . . . . . . . . . . . . . . 36

4.5 Application of DIR to categorical variable . . . . . . . . . . . . . . . 37

4.6 Sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Distribution of labels for the unbiased dataset . . . . . . . . . . . . . 39

4.8 Unbalanced biased dataset . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Balanced biased dataset . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Metrics comparison for the three versions of the synthetic dataset . . 41

4.11 Classification report for the biased balanced dataset after the applica-

tion of Reweighing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.12 Variables high correlated with the sensitive variable s . . . . . . . . 43

4.13 Comparison of Reweighing + DIR with the other methods for the

Synthetic Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



List of Figures viii

4.14 Distribution of features of the Adult Dataset . . . . . . . . . . . . . 45

4.15 Metrics comparison for the Adult Dataset . . . . . . . . . . . . . . . 46

4.16 Reweighing + DIR comparison on the Adult Dataset . . . . . . . . . 47

4.17 Distribution of sensitive variable and label of the Bank Dataset . . . 48

4.18 Metrics for Bank Dataset . . . . . . . . . . . . . . . . . . . . . . . . 48

4.19 Distribution of label and sensitive variable of the German dataset . . 49

4.20 Metrics comparison for the German Dataset . . . . . . . . . . . . . . 50

4.21 Sampling recursion tree for n = 2 . . . . . . . . . . . . . . . . . . . . 53

4.22 Application of DEMV on a real dataset . . . . . . . . . . . . . . . . 55

4.23 COMPAS label distributions . . . . . . . . . . . . . . . . . . . . . . 57

4.24 COMPAS metrics comparison . . . . . . . . . . . . . . . . . . . . . . 58

4.25 Distribution of sensitive variables and label for the German Credit . 59

4.26 Methods performances for German Credit . . . . . . . . . . . . . . . 59

4.27 Distribution of sensitive variables and label for the Adult Income

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.28 Metrics comparison for the Adult Dataset . . . . . . . . . . . . . . . 61



ix

List of Tables

2.1 SWfMS features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Categorization of fairness definitions . . . . . . . . . . . . . . . . . . 13

2.3 Categorization of group fairness . . . . . . . . . . . . . . . . . . . . . 13



x

List of Algorithms

1 Debiaser for Multiple Variables . . . . . . . . . . . . . . . . . . . . . . 54

2 Group balancing algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55



xi

Acronyms

DEMV Debiaser for Multiple Variables. 2, 3, 51, 53, 56–58, 60, 62–64

DS Data Science. 1–4, 6, 17, 19, 20, 64, 65

FPR False Positive Rate. 11

FR Functional Requirement. 17–19

QR Quality Requirement. 2, 4, 8, 19–22, 24–26, 63–65

TPR True Positive Rate. 11



1

Chapter 1

Introduction

Data Science (DS) is an emergent multidisciplinary research field that combines

disciplines as statistics, computer science, communication, in conjunction with the

application domain knowledge to extract useful insights and decisions from data and

their environments. Nowadays, many domain experts, thus, face the necessity to

realize their own Data Science project[14, 36], without having full knowledge of the

underlying ivolved disciplines. Data Science (DS) workflows1 represent useful tools

used nowadays to build DS in a more effective way.

The workflows are defined as a set of processes that convert raw (unprocessed)

data into actionable answers to business questions by leveraging innovative analysis

techniques. Unfortunately, such workflows usually still require good knowledge and

high expertise to choose the best techniques and models for the problem type that

has to be solved. For this reason, many techniques have been proposed to automate

some phases of the pipeline’s building. However, these techniques mainly focus

on semantic characteristics of the input dataset, ignoring other important quality

requirements that should be taken into account during a DS project. In addition, the

quality of such pipelines is usually measured solely considering performances (e.g.

Accuracy, Precision and Recall as reported in [26]) of the used machine learning

model without considering other important quality aspects which we will discuss

later on.

For the aforementioned reasons, in this thesis, we are focused on study DS
1in this thesis, we will use workflows and pipelines in an interchangeably way
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workflows from a quality point of view, identifying those quality requirements (QR)

that can be employed to define the Quality of a DS pipeline. We think that a more

extended list of them must include: the Computational Complexity, defined

both by the memory space and the time required by the pipeline to be completed;

the Prediction’s Quality of the machine learning model, measured using classic

metrics as Accuracy, Precision, Recall; the Bias and Fairness of the dataset and

of the model respectively, the Explainability of the model’s results, Privacy of

dataset’s sensitive information. Among all these quality attributes we will focus on

the Bias and Fairness of machine learning systems since is one of the most interested

and unexplored ones. It worth notice that the Bias and Fairness is still an unsolved

research topic: e.g. considering the systems built by companies as Amazon2 or

Facebook3 that have been proven to be biased towards some sensitive groups. For

this reason, a lot of research has been conducted in this field in order to find the

best ways to measure and improve the fairness of machine learning algorithms.

To summarise the aforementioned scenarios and aims, in this thesis, we have

been focused at first to perform a qualitative analysis of Data Science workflows,

highlighting how the selected Quality Requirement can influence the user’s choices

during all the steps of the pipeline.

Secondly, we made an in-depth analysis of the Bias and Fairness QR, making,

first of all, a survey of the definitions, metrics, and mitigation approaches exist-

ing in the literature. In adjunction, we studied some established bias mitigation

algorithms by applying them to datasets known in the literature to be biased. All

the aforementioned works have led us to overcome some limits of the employed

bias mitigation methods, by proposing a new method, the Debiaser for Multiple

Variables (DEMV), which is an extension of the Sampling method to a more general

case. Lastly, exhaustive experimentation has proved the strength of the proposed

approach.
2https://www.bbc.com/news/technology-47117299
3https://www.theverge.com/2021/4/9/22375366/facebook-ad-gender-bias-delivery-

algorithm-discrimination

https://www.bbc.com/news/technology-47117299
https://www.theverge.com/2021/4/9/22375366/facebook-ad-gender-bias-delivery-algorithm-discrimination
https://www.theverge.com/2021/4/9/22375366/facebook-ad-gender-bias-delivery-algorithm-discrimination
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1.1 Thesis structure

This thesis is organised as follows:

• In chapter 2, we introduce the background knowledge and related works. In

particular, we describe examples of systems that has been created to ease the

development of DS workflows and show methods that have been developed to

automate the building of specific pipelines steps. Then, we start focusing on

the Bias and Fairness of machine learning models by making a survey of all

the different definitions of bias and all the different metrics used to measure

the fairness of a model. In addition, we describe a categorization of such

metrics and their possible use cases. Finally, we describe existing algorithms

to mitigate the bias of machine methods.

• In chapter 3, we describe the context in which our work has been done. In

particular, we describe more in-depth our qualitative point of view on DS

pipeline. We define the different selected quality requirements and show a high-

level model of a workflow, highlighting how these requirements can influence

the user’s choices in all the pipeline’s steps.

• Chapter 4 describes the experimental analysis we have conducted on bias miti-

gation methods and details our proposed extension of one of these methods. In

particular, we first describe the selected datasets and the analysis methodology.

Then, we describe the classic algorithms selected from literature and show the

results of their application to the aforementioned datasets. Finally, we present

the Debiaser for Multiple Variables (DEMV) and compare it with the other

established methods.

• Chapter 5 concludes the thesis by first making a survey of the obtained results.

Then, it describes the future works on both Bias and Fairness and the study

of High-Quality DS workflows.



4

Chapter 2

Background Knowledge and

Related Works

Over the years, a lot of literature has been produced about both the automation

of DS workflow [47, 49] and bias and fairness [16, 53].

In this chapter, we make a survey of several types of research that are of interest

for this thesis or our future works. We start by first make an overview of the most

relevant scientific workflow platforms which can be of interest for the future works of

our project (section 2.1). Then we highlight several approaches on automation of DS

workflows, which focus mainly on functional aspects of a DS pipeline (section 2.2).

Next, we start focusing on one of the selected QR, Bias and Fairness, by making

a survey of all the different definitions and metrics existing in literature. Finally,

we describe some proposed approaches to mitigate classification bias showing also a

categorization of them (section 2.3).

2.1 Overview of Scientific Workflow Management Sys-

tems

A Scientific Workflow Management System (SWfMS) is a tool for develop and

execute workflows and manage data sets in various computing environments [49].

Over the years many SWfMS have been developed addressing different user needs;

here we will describe the ones that are more interesting for our domain. More
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precisely, for the selection of the relevant SWfMS we have taken in consideration

the following features: i) the presence of a user interface ii) the ease of extending

the workflow features introducing new custom nodes iii) the ease of analyzing and

reason about the generated workflow.

Galaxy [33] is a web-based platform used mainly to analyze large biomedical

datasets. It provides a GUI for developing scientific workflows through browsers

and a python API [60] for creating new modules and extending the already large

repository of available methods. The created workflows can be exported as .ga files,

which are nothing more than a JSON structured in a specific way, so they are easy to

read and analyze. The main benefit of Galaxy over the other selected platforms is the

existence of different public web-servers located at different geographic locations 1

allowing researchers to develop and run their workflow without the need of installing

anything on their machines.

KNIME [11] is a modular environment, which enables visual assembly and

interactive execution of data pipelines. It allows simple integration of new algorithms

and tools as well as data manipulation or visualization methods in the form of new

modules or nodes. KNIME provides a free and open-source desktop application

built upon the Eclipse ecosystem and a commercial server application. A workflow

description file can be exported as an XML file allowing researchers to read and

analyze them easily. One main advantage of KNIME over the other SWfMS is

his general-purpose nature and the magnitude of his repository of heterogeneous

methods ranging from data preprocessing and manipulation to machine learning

model selection and evaluation.

Kepler [51, 1] is an SWfMS build upon the Ptolemy II system as a desktop

application. It provides an intuitive GUI for the design and execution of scientific

workflows. Kepler workflows can be exchanged and analyzed in XML using Ptolemy’s

own markup language (MoML). Differently from other SWfMS, Kepler has an actor-

oriented paradigm for modelling workflows. Each workflow step is implemented as

an actor that abstracts from the underlying execution model allowing the plugin of

different execution models into workflows.
1https://galaxyproject.org/use/

https://galaxyproject.org/use/
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SWfMS UI Presence Extension ease Analyze ease

Galaxy X X X

KNIME X X X

Kepler X

Table 2.1. SWfMS features

HyWare [13] is a novel SWfMS introducing the concept of hybrid workflows.

A hybrid workflow is a workflow that contains both automated and manual tasks,

where an automated task is a workflow step executed automatically by the system.

In contrast, a manual task is a workflow step that the end-user must manually

execute (like installing software or download a file from a specific repository). At

the date of this thesis, the language has not been fully implemented yet. Still, the

language definition and feature implementation approach has been beneficial for

defining our own project work.

Table 2.1 summarizes the described features for each SWfMS considered. We have

deliberately excluded HyWare from this synthesis since it has not been implemented

yet, and so the features can not be analyzed. From the table, it can be seen that

both Galaxy and KNIME are suited for our use case and can be considered as base

platforms for our future works.

2.2 Approaches on automating Data Science workflows

Over the years, many solutions have been proposed to automate the data

preprocessing or the model selection and evaluation steps of a DS workflow. The

solutions that we evaluated can be grouped into two macro-categories: solutions that

use a metadata-based approach and solutions that use a machine learning approach

to automate these steps.

Starting from the first category of solutions, Rönkkö et al. [58] proposed the use

of characterizations and a reachability algorithm to solve the problem of the selection

and sequencing of preprocessing methods based on the user requirements. Their

solution has been applied on environmental data, which are, citing of the authors,
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"heterogeneous, as it may consist of data from sources such as weather stations,

weather radars, chemical sensors, acoustic sensors, and off-line laboratory analysis".

Goncalves Jr. and Barros [34] present a graphical application for the Data Mining

Preparation Markup Language (DMPML), which is an XML application designed

to represent the data preparation phase of the Knowledge Discovery in Databases

(KDD) process. DMPML supports the reuse of data preprocessing directives using

XSLT to map raw data into data ready to be used by many data mining algorithms.

The application presented here, DMPML-TS, automates the data preparation phase,

speeding up the codification and transformation of data, and providing support to

facilitate the use of different data mining algorithms in the same and/or similar data

based on their codification stored in separate XML documents. Gil et al. [32, 31, 64]

present an approach where semantic metadata is generated as scientific data is being

prepared and then used to configure models and customize them to the data. This

metadata is then used in a workflow system to select analytic models dynamically

and to set up model parameters automatically. In addition, all aspects of data

processing are documented, and the system is able to generate extensive provenance

records for new data products based on the metadata. As a result, the system can

dynamically select analytic models based on the metadata properties of the data it

is processing, generating more accurate results.

About the second category of solutions, AutoML [37] is an entire research branch

focused on automating various steps of the data science workflow using machine

learning techniques. A lot of research has been conducted on this branch, and

describing the different proposed solutions would be out of the scope of this work.

As an example of how an AutoML approach works on automating the creation of a

data science pipeline, we cite TPOT [56], an open-source genetic programming-based

AutoML system that optimizes a series of feature preprocessors and machine learning

models to maximize classification accuracy on a supervised classification task.

These described methods mostly focus on semantic aspects of the data to suggest

pre-processing algorithms or select the best machine learning models. Instead, our

approach uses quality requirements, defined by the user, to guide they during all

the steps of the pipeline.
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2.3 Background knowledge on Bias and Fairness

Data is often heterogeneous, generated by subgroups with their own characteris-

tics and behaviours. This heterogeneities can bias the data. A model learned on

biased data may lead to unfair and inaccurate predictions [53].

In this section, we start focusing on the QR that concerns to Bias and Fairness.

We start by first making a survey of the existing different definitions of bias in

literature (section 2.3.1). Then, we will describe some existing definitions and metrics

to measure model fairness and show a classification of them (section 2.3.2).

2.3.1 Bias definitions

A biased dataset is a dataset in which there is a statistical sample in which the

probability of inclusion in the sample of individuals belonging to the population

depends on the characteristics of the population under study. Bias in data can

exist in many shapes and forms, some of which can lead to unfairness in different

downstream learning tasks. For years, many definitions have been proposed, each

trying to identify a different source of bias. By the time this thesis has been written,

at least 23 different definitions of bias have been identified [53]. In the following, we

cite the most common and important of them:

1. Historical Bias Historical bias is the already existing bias and socio-technical

issues in the world and can seep into from the data generation process even

given a perfect sampling and feature selection [62]

2. Aggregation Bias Aggregation bias happens when false conclusions are drawn

for a subgroup based on observing other different subgroups or generally when

false assumptions about a population affect the model’s outcome and definition.

[62]

3. Temporal Bias Temporal bias arises from differences in populations and

behaviors over time. [57]

4. Social Bias Social bias happens when other people’s actions or content coming

from them affect our judgment. [3]
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5. Popularity Bias Items that are more popular tend to be exposed more. How-

ever, popularity metrics are subject to manipulation—for example, by fake

reviews or social bots. [18]

6. Ranking Bias The idea that top-ranked results are the most relevant and

important will result in attraction of more clicks than others. [53]

7. Evaluation Bias Evaluation bias happens during model evaluation. This in-

cludes the use of inappropriate and disproportionate benchmarks for evaluation

of models. [62]

8. Emergent Bias Emergent bias happens as a result of use and interaction with

real users. This bias arises as a result of change in population, cultural values,

or societal knowledge usually some time after the completion of design. [28]

9. Behavioral Bias Behavioral bias arises from different user behavior across

platforms, contexts, or different datasets [57]

10. Presentation Bias Presentation bias is a result of how information is pre-

sented [4]

11. Linking Bias Linking bias arises when network attributes obtained from user

connections, activities, or interactions differ and misrepresent the true behavior

of the users. [57]

12. Content Production Bias Content Production bias arises from structural,

lexical, semantic, and syntactic differences in the contents generated by users.

[57]

Figure 2.1 describes a possible categorization of the different definitions of bias

based on the cause that generated it. Bias can be generated by the data, by the

machine learning algorithm or by the user interaction with some system that again

generates data. However, this categorization is not strict because bias can be

propagated through the pipeline and generate another type of bias at another point

of the workflow. In particular, bias in data can cause a bias in the algorithm that

in turn can cause a bias in the user interaction favouring, for example, one thing
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Figure 2.1. Bias Feedback Loop

instead of another. This process is called Feedback Loop [53] and is the reason

why it is not possible to treat each definition of bias separately.

2.3.2 Definitions of Algorithmic Fairness and metrics

Algorithmic Fairness (that from now on we will call simply Fairness) can be

defined as the absence of any prejudice or favouritism towards an individual or a

group based on their intrinsic or acquired traits in the context of decision-making

[59]. Usually, discrimination occurs with respect to some sensitive groups, identified

by some sensitive (or protected) variables in the dataset . In particular, we define a

privileged (unprivileged) group as a group (often defined by one or more sensitive

variables) that are disproportionately (less) more likely to be positively/negatively

classified [16]. Protected variables define the aspects of data that are socioculturally

precarious for the application of ML. Common examples are gender, ethnicity, and

age (as well as their synonyms). However, the notion of a protected variable can

encompass any feature of the data that involves or concerns people [6].

The different definitions of fairness are strictly related to the metrics we use

to measure the fairness of an algorithm. In the following, we list some fairness

definitions and the related metric formulation:
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1. Statistical/Demographic Parity

One of the earliest definitions of fairness, this metric defines fairness as an

equal probability of being classified with the positive label [23]:

Pr(ŷ = 1|A = 0) = Pr(ŷ = 1|A = 1) (2.1)

2. Disparate Impact

Similar to statistical parity, this definition looks at the probability of being

classified with the positive label. However, in contrast to parity, Disparate

Impact considers the ratio between unprivileged and privileged groups. Its

origins are in legal fairness considerations for selection procedures which

sometimes use an 80% rule to define if a process has disparate impact (ratio

smaller than 0.8) or not [25]:

Pr(ŷ = 1|A = 0)
Pr(ŷ = 1|A = 1) (2.2)

3. Equal Opportunity

An algorithm is considered to be fair under equal opportunity if its TPR is

the same across different groups. This means that the probability of a person

in a positive class being assigned to a positive outcome should be equal for

both protected and unprotected group members [65]:

Pr(ŷ = 1|A = 0, y = 1) = Pr(ŷ = 1|A = 1, y = 1) (2.3)

4. Equalized Odds (Average Opportunity)

Similarly to equal opportunity, in addition to TPR, equalized odds simultane-

ously considers FPR as well, i.e., the percentage of actual negatives that are

predicted as positive [10]:

Pr(ŷ = 1|y = 1 & A = 1) = Pr(ŷ = 1|y = 1 & A = 0) &

Pr(ŷ = 1|y = 0 & A = 1) = Pr(ŷ = 1|y = 0 & A = 0) (2.4)
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5. Generalized Entropy Index

The Generalized Entropy Index (GEI) [61] considers differences in an individ-

ual’s prediction (bi) to the average prediction accuracy (µ). It can be adjusted

based on the parameter α, where bi = ŷi − yi + 1 and µ =
∑

i
bi

n :

GEI = 1
nα(α− 1)

n∑
i

= 1[(bi
µ

)α − 1] (2.5)

6. Theil Index

Theil Index is a special case of GEI for α = 1. In this case, the formula

simplifies to:

Theil = 1
n

n∑
i=1

(bi
µ

) log(bi
µ

) (2.6)

Finally, there are two other versions of Statistical Parity and Disparate

Impact that take into consideration the true label of the items and not the predicted

ones. Formally they are defined as:

Statistical Parity : Pr(y = 1|A = 0) = Pr(y = 1|A = 1) (2.7)

Disparate Impact : Pr(y = 1|A = 0)
Pr(y = 1|A = 1) (2.8)

These metrics can be used to measure the fairness of the dataset instead of the

classifier.

Fairness definitions can be classified into two different groups [23, 45]:

• Individual Fairness: give similar predictions to similar individuals

• Group Fairness: treat different groups equally

Table 2.2 shows the categorization of the definitions described above. Based on

the type of application and fairness they want to have, users may choose to use one

category of metrics or another.

Concerning group fairness, we distinguish two different definitions of it: We Are

All Equal (WAE) [27] and What You See Is What You Get (WYSIWYG) [66]. The
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Definition Group Individual

Statistical Parity X

Disparate Impact X

Equal Opportunity X

Equalized Odds X

GEI Index X

Theil Index X

Table 2.2. Categorization of fairness definitions

Definition WAE WYSIWYG

Statistical Parity X

Disparate Impact X

Equal Opportunity X

Equalized Odds X

Table 2.3. Categorization of group fairness

WAE definition holds that all groups have similar abilities with respect to the task

(i.e. have the same probability to be classified in a certain way). The WYSIWYG

definition holds, instead, that the observations reflect ability with respect to the task

(i.e. an item should be classified in a certain way only if the other attributes imply

it). If the user application follows the WAE definition, then the demographic parity

metrics should be used: Disparate Impact and Statistical Parity. If the application

follows the WYSIWYG definition, then the equality of odds metrics should be used:

Equal Opportunity and Equalized Odds. Table 2.3 synthesizes these categories of

group fairness.

2.3.3 Methods for bias mitigation

Over the years, many approaches have been proposed to mitigate bias and

improve the fairness of machine learning algorithms [53, 16]. These approaches can
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be categorized into three groups [45]:

• Pre-processing

Pre-processing techniques try to transform the data so that the underlying

discrimination is removed.

• In-processing

In-processing techniques try to modify and change state-of-the-art learning

algorithms in order to remove discrimination during the model training process.

• Post-processing

Post-processing is performed after training by accessing a holdout set that was

not involved during the training of the model.

The choice among algorithm categories can partially be made based on the

system’s ability to intervene at different parts of a machine learning pipeline. If the

system is allowed to modify the training data, then pre-processing can be used. If

the system is allowed to change the learning algorithm, then in-processing can be

used. If the system can only treat the learned model as a black box without any

ability to modify the training data or learning algorithm, then only post-processing

can be used. However, it is recommended to apply the earliest category of methods

possible in order to have the most flexibility and opportunity to correct bias [9].

The literature is dominated by approaches for mitigating bias and unfairness in

machine learning within the problem class of binary classification. There are many

reasons for this, but most notably [16]:

1. Many of the most contentious application areas that motivated the domain

are binary classification problems (hiring vs. not hiring; offering a loan vs. not

offering a loan; re-offending vs. not re-offending etc.).

2. Quantifying fairness on a binary dependent variable is mathematically more

convenient; addressing multi-class problems would at the very least add terms

in the fairness quantity.
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In the following we cite the main approaches to handle bias in the binary

classification case. Within these approaches, many methods have been defined. They

are mostly pre-processing methods, however some of them can belong to multiple

classes (e.g. pre-processing and in-processing):

1. Blinding

Blinding is the approach of making a classifier immune to one or more sensitive

variables [67]. A classifier is blind for a sensitive variable if there is no observable

outcome differentiation based on that variable. Some works have termed the

omission of sensitive variables from the training data as blinding [16]. However,

omission has been shown to decrease the model accuracy and not improve the

model fairness [35, 41].

2. Sampling and Subgroup Analysis

Sampling methods have two primary objectives:

(a) To correct the training data and eliminate bias [38]

(b) To identify groups (or subsamples) of the data that are significantly

disadvantaged by a classifier [16]

Approaches that seek to create fair training samples include notions of fairness

in the sampling strategy. [41] proposed a way to sample (by over-sampling)

instances that belong to some improbable groups. This method is one of the

selected algorithms for our analysis.

3. Transformation

Transformation approaches learn a new representation of the data, often

as a mapping or projection function, in which fairness is ensured, but still

preserving the fidelity of the machine learning task [25]. Current transformation

approaches operate mainly on numeric data, which is a significant limitation

[25]. There are many ways to transform the training data: operating on

the label ([21]), transforming the numerical non-sensitive variables ([25]),

mapping individuals to an input space which is independent of specific protected
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subgroups. Among all the proposed methods we cite the Disparate Impact

Remover [25], which is one of the methods used in our analysis.

4. Relabelling and Perturbation

Relabelling and perturbation approaches are a specific subset of transformation

approaches: they either flip or modify the dependent variable (relabelling

[19]), or otherwise change the distribution of one or more variables in the

training data directly (permutation [39]). Referred to as data-massaging by [41],

relabelling involves the modification of the labels of training data instances so

that the proportion of positive instances are equal across all protected groups.

Perturbation instead often aligns with notions of “repairing” some aspects of

the data with regard to notions of fairness. However, is important to say that

the modification of the data via relabelling and perturbation is not always

legally permissible [7] and changes to the data should be minimised [52].

5. Reweighing

Unlike transformation, relabelling, and perturbation approaches which alter

certain instances of the data, reweighing assigns weights to instances of the

training data while leaving the data itself unchanged [16]. Weights can serve

multiple purposes:

(a) To indicate a frequency count for an instance type ([12])

(b) To indicate lower or higher importance on sensitive training samples ([41])

(c) To improve classifier stability ([43])

Methods using the reweighing approach can be classified between the pre-

processing and in-processing classes. With appropriate sampling, reweighing

can maintain high accuracy when compared to relabelling and blinding (omis-

sion) approaches [41]. Among all the proposed reweighing methods, we cite

the algorithm proposed in [41] which will be used in our analysis
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Chapter 3

Context Definition

In this chapter, we describe our proposed approach by defining a set of Functional

and, especially, Quality requirements to which a DS workflow must comply. We

start by first defining a set of Functional requirements that compose most generic

DS pipelines (section 3.1). Next, we focus on the requirements that can be used to

define our concept of High Quality of a DS workflow (section 3.2). Finally, we show

a high-level model of a DS pipeline, highlighting how the different quality attributes

that we have selected can influence the user’s choices while developing it (section

3.3).

3.1 Functional Requirements

In software engineering, a Functional Requirement (FR) defines a function of

a system or its components, where a function is described as a behaviour between

inputs and outputs [29].

In the context of a DS workflow, the functional requirements define the steps

of the workflow that go from a raw dataset to a machine learning model ready for

production. These steps can be described as follows:

1. Data Preprocessing

The system must be able to manipulate and transform data according to the

user’s needings.
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This FR includes all the operations required to transform a raw dataset to a

clean and processed dataset that can be given as an input to train and test a

machine learning model.

2. Model Selection

The system must allow the user to select a machine learning model from a

range of possible models suited for the problem that has to be addressed.

This FR describes the model selection phase, in which the user can select a

machine learning model that is able to solve the required task (like classification

or regression problem). The range of selectable machine learning models has

to be filtered accordingly to the type of task that has to be solved. The user

can return to this step also after advancing in the pipeline if he has to change

the selected model for some reasons.

3. Model Tuning

The system must allow the user to train and test the selected machine learning

model in order to find the best hyper-parameters that optimize the model’s

performances and results.

This requirement describes the training and testing phase of a machine learning

model. There are many ways to train and test a model, but as a general rule,

we can say that the model must be able to generalize to data that he have

never seen before. For this reason, in sample evaluation (training and testing

a model on the same set of features) must be avoided [26]. Instead, a more

correct way of doing training and testing is by using a holdout set, which is a

set of data removed from the training set and used only for testing the model.

Cross validation is a more sophisticated version of the holdout set technique,

which provides splitting the initial dataset into k subsets (usually k is equal to

5 or 10 [26]) and then iteratively train the model on k− 1 sets taking out each

time a different set for testing. This technique is preferable over the holdout

set technique because allows the model to generalize better and to test it in a

more realistic case scenario.
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4. Model Explainability

The system must allow the user to apply explainability methods to the trained

model.

This requirement is related to applying machine learning explainability methods

to the final machine learning model. We will discuss more in detail about

model explainability in the next section.

As said at the beginning, these FR are the building blocks of most generic DS

pipelines, and we have used them to model a pipeline that is as generic as possible.

3.2 Quality Requirements

In software engineering, a Quality Requirement (QR or Non-Functional Require-

ment) is a requirement that specifies criteria that can be used to judge the operation

of a system, rather than specific behaviours [17].

To analyze a DS workflow from a qualitative point of view, we have to determine

which are the quality aspects that we can use to judge the operation of the workflow

and that can actually influence the user’s decisions. In the following, we will describe

the identified QR distinguishing between quantitative QR (in which the user have

to define a threshold with respect to some metrics) and qualitative QR (in which

the value is a yes or no flag):

1. Computational Complexity

This quantitative QR defines the computational complexity of a DS pipeline

as the pair Space Complexity (SC) and Time Complexity (TC), where the first

indicates the amount of memory required by a workflow to perform all its

operations. Instead, the second indicates the time required by the workflow

to complete. Both SC and TC are a function of at least the size of the input

dataset [63]. This QR has influence in various stages of the workflow and has

also influence on other QR like Quality of Predictions or Explainability.

2. Quality of Predictions
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This quantitative QR is used to define how good the model must be in predicting

outcomes. There are different metrics in literature to compute the prediction

quality of a machine learning model, each addressing a different goal of the

user. Some examples of metrics for the prediction quality could be [26]:

• Precision: fraction of true positives (TP) with respect to the total positive

predictions:
TP

(FP + TP ) (3.1)

• Recall: fraction of TP to the total positive items of the dataset:

TP

(TP + FN) (3.2)

• F1 Score: harmonic mean of Precision and Recall:

2 ∗ Precision ∗Recall
Precision+Recall

(3.3)

• Accuracy: fraction of True Positives (TP) and True Negatives (TN) above

the total of predictions:

TP + TN

TP + TN + FP + FN
(3.4)

• Root Mean Squared Error : square root of the mean of the square of all

the errors (this metric is mostly used for regression problems):

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (3.5)

This requirement is quite essential for developing a high-quality DS workflow.

In fact, it is sometimes used as the only metric to quantify the quality of a

pipeline. For this reason, we have decided to include it in our definition. It

impacts mostly the Model Tuning step of our workflow and is influenced by

other selected QR.

3. Explainability

Explainability can be defined as the ability of a system of enabling user-driven

explanations of how a model conclusion is reached, [20]. There are researches in
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literature explaining why explainability must be considered a QR [46] allowing

human-in-the-loop systems to make better decisions and outcomes. This QR

can influence the Privacy Level of the dataset and the Computation Complexity

of the workflow and can be influenced by the Bias and Unfairness mitigation

methods.

4. Privacy

Privacy [30] can be defined as a qualitative QR allowing sensitive information

of a dataset to be hidden, changing the value of some attributes. Privacy

can be quantified with a crescent level where 0 means that the dataset has

no privacy encryption. This feature impacts mostly the explainability since a

higher level of privacy can cause the model to be less explainable.

5. Bias and Fairness

Bias (and consequently unfairness) has several definitions, and its common

usage is decidedly negative. We typically use it to mean systematic favouritism

of a group. In Data Science, bias is a deviation from expectation in the data.

More fundamentally, bias refers to an error in the data [24]. Instead we say

that a model is fair if it does not have any prejudice or favouritism towards

an individual or a group based on their inherent or acquired characteristics

[53]. We will deep more on several definition and metrics for bias and fairness

in chapter 2.3, but for now, we say that this qualitative QR influences the

explainability (since some methods for bias mitigation require to change the

label of some sensitive attributes), the computational complexity (since some

methods for bias mitigation are quite complex computationally) and the

quality of predictions (since mitigating the bias can sometimes influence the

performance of a model) of the pipeline.

Figure 3.1 summarizes the QR that compose our definition of quality, showing

in yellow the quantitative QR and blue the qualitative ones. Arrows in the graph

mean that a QR A as an influence on a QR B. Sometimes, for example, for the

computational complexity and the quality of predictions, the influence is mutual;
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Figure 3.1. Quality attributes influence

in other cases, like for the problem type and the computational complexity, it is

mono-directional.

3.3 Data Science Workflow overview

Figure 3.2 shows a high-level view of the modelled workflow. As before, the

quality QR are distinct in qualitative (blue) and quantitative (orange), and, as can

be seen from the picture, they are arranged all along the pipeline, meaning that

they will guide the user through the development of all the pipeline’s phases. The

user symbol above the features means that they have to be defined by the user.

The pipeline is composed of several steps, each influenced by one or more QR. In

the following, we will describe more in detail each of these phases and, to simplify

the workflow, we will assume that the user wants to generate a fair model; if instead,

a user does not want to generate a fair model, the workflow will skip all the bias

and fairness related tasks.

3.3.1 Data Preprocessing

Figure 3.3 describes the data pre-processing phase. After explicitly defining the

thresholds for the quality metrics, the user has to load the data and apply the first

set of pre-processing operations (like handle missing values, encode the data, and so

on) that are not influenced by our quality attributes. After this process, there is
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a first decision point caused by one of the quality attributes: in fact, the process

checks for bias in the data set using the sensitive attributes defined by the user as a

reference and, if it finds that a certain subgroup is discriminated against compared

to another group, it applies a bias mitigation algorithm to remove it. Then there is

another decision point motivated this time by the privacy QR: if the data has to be

private, then a privacy transformation is applied to them; otherwise, the workflow

moves to the next step.

3.3.2 Model Selection

The next step of our pipeline is the Model Selection phase, which is shown

in figure 3.4. This step takes as input the processed dataset from the previous

data preprocessing phase and returns a machine learning model suitable for the

requirements defined. In particular, the set of selectable machine learning models is

filtered by the system based on the type of machine learning problem that has to be

handled and on the computational complexity threshold defined by the user at the

beginning. Each machine learning model will have space and time computational

bounds associated; as an example for a classification problem, let n be the size of the

training sample, d the number of dimensions, and k the number of classes. Space

and time complexity for KNN, SVM and Logistic regression models will be [5, 44]:
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KNN : TC = O(knd) SC = O(nd) (3.6)

SVM : TC = O(n2) SC = O(kd) (3.7)

Logistic regression : TC = SC = O(nd+ d+ n) (3.8)

So this step starts by first filtering the models by the machine learning approach

(classification, regression, etc. . . ), then, after the user selects one of the models, the

system checks if his complexity is under the bound defined by the user, if so the

process continues to the next step; otherwise, the system asks the user to change the

complexity bound or the selected model. We have decided to not filter the models by

their complexity in the selection phase but to do this check only after the selection

of the model because, in this way, the user has access to all the possible models

for a specific type of problem and then, if he wants to use a specific type of model

whose complexity his higher than his bound, he can directly change the pipeline’s

complexity bound.

3.3.3 Model Tuning

The workflow continues with the Model Tuning step shown in figure 3.5. This

step takes as input the selected model and the processed dataset from the previous

steps and returns the same model trained and tested ready for production. This

phase is one of the most critical in the pipeline since it is influenced by several QR,

some of which are in contrast with each other. The step starts with the training

and testing of the model to find the best hyperparameters. After tuning the model,

the system checks his quality of predictions (using one of the metrics defined in

section 3.2) and, if the quality is under the threshold defined by the user, it asks

him to change the defined quality bound or directly the machine learning model

(and consequently the computational bound). If the user chooses to change the

quality, bound the workflow restarts to train and test the model using the new bound

as a threshold; otherwise, if the user chooses to change the model, the workflow

returns to the Model Selection step allowing the user to change the computational

complexity threshold. If the results are above the quality bound, then the system
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checks for the fairness of the classifier: if the classifier is unfair and there is still

enough computation capacity, then the workflow returns to the Data Preprocessing

phase, allowing the user to apply bias mitigation methods and eventually change

the machine learning model. When the system verifies the fairness of the classifier,

the workflow can proceed to the final step.

3.3.4 Model Explainability

The last step of the workflow is the Model Explainability step, in which we

apply explainability algorithms to the final trained model. As can be seen in figure

3.6, this step is influenced by several QR. A first decision point is made at the

beginning of the workflow. We check if the explainability is a user requirement;

if so, the pipeline continues; otherwise, it skips this step entirely, going directly

to the end. If the explainability is a user requirement, a second decision point

concerns the self-explainability of the selected machine learning model. In fact,

there are machine learning models, like Decision Trees, that are white-box and, for

this reason, they do not require any other algorithm to make them explainable; on

the other hand, black-box models, like Neural Networks, require the application of
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post-processing algorithms to explain their results [50]. If we are using a black-box

model, a third decision point concerns the applicability of explainability models.

There are two reasons for an explainability model not to be applicable: high privacy

applied to data and not enough computation capacity still available. In the first

case, changing the dataset’s values to ensure high privacy can impact the model

explainability since it could be difficult to go back to the original values. In this

case, the user can choose to change the privacy applied to the dataset returning to

the Data Preprocessing phase. Concerning the second reason, explainability models

are usually quite complex computationally [48], and so it could be possible not to

have enough computational capacity still available. In this case, the user can change

the computational complexity threshold returning to the Model Selection step. The

user can also choose to remove the explainability requirement in both cases, keeping

the defined privacy and computational boundaries. This second choice has not been

highlighted in the figure to keep the diagram more concise and readable. Finally, if

explainability is applicable, the selected explainability algorithm is applied to the

model, and the workflow ends.
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Chapter 4

Experimental analysis on Bias

and Fairness

In chapter 2 we described the different sources of bias and shown how it can be

propagated through different points of the workflow. As a proof of concepts, figure

4.1 shows the classification report of a classifier trained with a biased dataset. As

we can see from the figure, the model tends to favor the privileged group assigning

more positive labels to it. Instead, for the unprivileged group we can see that the

Recall is near zero, meaning that the model is unable to predict the true positives at

all. This is an example of the aforementioned Feedback Loop, in which the bias

of the dataset is propagated to the model, which, in turn, could influence negatively

the user’s behaviors. For this reason, many methods have been developed in order

to mitigate the bias and prevent his propagation.

In this chapter, we selected and analyzed the performances of three established

pre-processing algorithms and proposed two novel approaches. We have focused

our analysis only on pre-processing methods because, as said in chapter 2, they are

the preferred choice if pre-processing is applicable. This chapter is structured as

follows: in section 4.1 we describe the datasets used for our analysis. In section

4.2, we describe the applied methodology. In section 4.3 we describe the selected

fairness algorithms and show how they affect the datasets. In section 4.5 we describe

in detail our proposed extension of Sampling. Finally, in section 4.4 we show the

experiment results.
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Figure 4.1. Classification report of a bias classifier

4.1 Selected datasets

In this section, we describe the datasets selected for our experiment. In particular,

we selected a heterogeneous set of datasets that are known in literature to be biased

[53]. In addition, we also created a synthetic dataset which allowed us to make a

first analysis of the methods in a controlled environment. The selected datasets are

the following:

1. Synthetic Dataset1

This is a synthetic dataset created from scratch using the make_classification

function of the Scikit-learn library 2. This dataset is made of 10000 random

samples for 12 attributes, in which the attribute 10 is the label to predict and

the attribute s is the sensitive variable. We have analyzed this dataset in three

versions:

(a) An unbias version in which the distribution of the labels is the same for

both groups.
1https://github.com/giordanoDaloisio/bias-mitigation-methods/blob/main/synthetic/

synthetic.csv
2https://scikit-learn.org/stable/index.html

https://github.com/giordanoDaloisio/bias-mitigation-methods/blob/main/synthetic/synthetic.csv
https://github.com/giordanoDaloisio/bias-mitigation-methods/blob/main/synthetic/synthetic.csv
https://scikit-learn.org/stable/index.html
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(b) A bias, unbalanced version of the dataset, in which the number of negative

labels is the double of the positive ones and are mostly for items with a

value of s equal to zero.

(c) A bias, balanced version, in which the number of negative and positive

labels is the same, but most of the positive labels are for items of the

privileged group.

2. Adult Income Dataset3

The Adult Dataset [42] is a dataset made of 30940 items for 15 features.

The records of this dataset contain information about people extracted from

the 1994 census bureau database. The goal is to predict if a person has an

income higher than 50k a year. This information is represented by the income

variable. This dataset has been analyzed in two version:

(a) A single sensitive variable version, where the protected variable is sex

and the men are privileged over women

(b) A double sensitive variable version, where the protected attributes are

sex and race and the privileged group are white men, while the the

unprivileged group are black women.

3. Bank Marketing Dataset4

The Bank Marketing dataset [55] is a dataset related to direct marketing

campaigns (phone calls) of a Portuguese banking institution. The classification

goal is to predict if the client will subscribe to a term deposit (variable y). The

sensitive variable is age, and the privileged group are people with less than 25

years (age variable equal to one). The dataset is made of 30488 samples for 21

columns.

4. German Credit Dataset5

The German Credit dataset [22] classifies people described by a set of

attributes as good or bad credit risks (credit variable). The dataset consists
3https://archive.ics.uci.edu/ml/datasets/Adult
4https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
5https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29


4.2 Methodology 31

of 1000 instances and 20 features. Like the Bank dataset, here the sensitive

variable is age. However, in this case, the privileged group are people with

more than 25 years (age variable equal to one), which are more likely to be

classified as good credit risk (credit variable equal to one). In addition, we

considered also a multiple sensitive variable version of it where the sensitive

variables are age and age. In this case, the privileged group are men with more

than 25 years, while the unprivileged group are women with less than 25 years

5. ProPublica Recidivism (COMPAS) Dataset6

The ProPublica Recidivism dataset (that for simplicity we will call COM-

PAS dataset) is the dataset used to train the COMPAS algorithm. COMPAS

(Correctional Offender Management Profiling for Alternative Sanctions) is a

popular commercial algorithm used by judges and parole officers for scoring

criminal defendant’s likelihood of reoffending (recidivism). It has been shown

that the algorithm is biased in favour of white women defendants, and against

black men inmates, based on a 2 year follow up study (i.e. who actually

committed crimes or violent crimes after 2 years) [2]. This dataset is made

of 6167 samples for 398 attributes. The sensitive variables are sex and race.

The goal is to predict if a person will be a recidivist in the next two years.

The favourable label, in this case, is 0, and the privileged group are caucasian

women (items with sex and race equal to one).

4.2 Methodology

In this section, we describe the methodology used for our analysis. In particular,

we have evaluated the performances of the selected methods using 10-fold cross-

validation in order to have more stable results. Cross-validation is a model-evaluation

technique that involves the split of the training data in k different folds (smaller

subsets). A model is trained using k − 1 of the folds of the training data; the

resulting trained model is then evaluated on the remaining part of the data (used

as a test set). The performance measures reported by k-fold cross-validation are
6https://github.com/propublica/compas-analysis

https://github.com/propublica/compas-analysis
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Figure 4.2. Example of 5-fold cross-validation

the average of the metrics obtained for each fold. Figure 4.2 shows an example of

5-fold cross-validation where in orange there are the testing sets and in blue are

the training sets. As we can see, in each iteration a different subset is selected for

testing: this ensures better stability and more realistic results.

The classifier used for our analysis is a Logistic Regression classifier. This

algorithm, despite its name, implements a linear classification model. In this model,

the probabilities describing the possible outcomes of a single trial are modelled using

a logistic function, which is a function whose values are between zero and one. The

logistic function is defined as:

logistic(θ) = 1
1 + exp(−θ) (4.1)

Where θ is the right side of a classic linear regression model [54]:

θ = β0 + β1x1 + β2x2 + · · ·+ βpxp (4.2)

In other words, Logistic Regression models can be seen an adaptation of Linear

Regression models to classification problems. We have decided to use this model

because it is quite simple and does not require much hyper-parameters configuration.

In this way, we can focus our analysis only on the debias and fairness methods
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leaving the model as it is.

The evaluation process has been implemented as follows:

1. First, we split the dataset in training and testing sets using the k-fold splitting

described above.

2. Then, we apply the selected fairness algorithm only on the training set and

train the Logistic Regression classifier with it

3. Then, using the testing set, we compute the following metrics: Balanced Accu-

racy, Disparate Impact, Statistical Parity, Average Odds, Equal Opportunity,

Theil Index and dataset’s Statistical Parity and Disparate Impact. For each

dataset, we compute also the classification report (Precision, Recall and F1

Score) for both privileged and unprivileged groups.

4. We repeat the steps 2 and 3 for each dataset’s split and then return the average

of all these metrics.

For Reweighing and Sampling we have not removed the sensitive variables from

the training and testing sets, while for DIR we have removed the sensitive variables

before training and testing the models as suggested in [25].

4.3 Employed classic debias algorithms

For our analysis, we have selected three of the most used pre-processing bias

mitigation algorithms and compared their performances using the metrics described

in section 2.3. For the sake of simplicity, we have limited our analysis to algorithms

related to classification problems. In the following, we describe the selected methods.

4.3.1 Reweighing

Reweighing [41] is an algorithm that applies weights to the dataset’s items

according to the sensitive group they belong to and the label values. For example,

items of the unprivileged group with a positive label will get higher weights than

those with a negative label. Weights are calculated as the ratio between the expected
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probability of an item of a group to have a certain label and the observed probability

of an item of a group to have a certain label:

W (X) = Pexp(S = X(S) ∧ Class = X(Class))
Pobs(S = X(S) ∧ Class = X(Class)) (4.3)

where:

Pexp(S = s ∧ Class = c) = |{X ∈ D|X(S) = s}|
|D|

· |{X ∈ D|X(Class) = c}|
|D|

(4.4)

Pobs(S = s ∧ Class = c) = |{X ∈ D|X(S) = s ∧X(Class) = c}|
|D|

(4.5)

Figure 4.3 shows an example distribution of weights for a biased dataset with a

single sensitive variable. As we can see, there are two clusters with low weights and

one small with a higher weight corresponding to items that differ from the expected

observations.

4.3.2 Disparate Impact Remover

Disparate Impact Remover (DIR) [25] is a pre-processing bias mitigation algo-

rithm that changes the unprotected features of the dataset to remove the correlation

between the protected attributes and them. The idea behind this algorithm is that
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even if we remove sensitive attributes from the dataset, a classifier can always trace

this information from the value of other variables related to them. Given a protected

attribute X and a single numerical unprotected attribute Y , let Yx = Pr(Y |X = x)

be the marginal distribution of Y conditioned on X = x. The rank of y ∈ Yx is then

defined as the cumulative distributions Fx : Yx → [0, 1] for values y ∈ Y . In order to

preserve the ability to predict the label correctly, this algorithm preserves the rank

of the items inside each group. Formally, let Ȳ be the repaired version of Y in the

repaired dataset D̄. We say that D̄ strongly preserves rank if for any y ∈ Yx and

x ∈ X, its repaired version ȳ ∈ Ȳx has Fx(y) = Fx(ȳ).

Figure 4.4 shows the distribution of a nonsensitive variable (hours-per-week)

before and after the application of the DIR algorithm. In this case, sex was the

sensitive variable, and we can see in figure 4.4(a) how the unprotected variable

was related to it. In particular, a model could infer that if an item has a value

of hours-per-week greater than 40, then it is very likely to have a value of sex

equal to one, and so apply discrimination based on this information. Instead,

after the application of DIR, we can see in figure 4.4(b) how the distribution of

hours-per-week is more balanced. In this case, it is more difficult for a model to

infer the membership group of an item looking only at the unprotected variable. It

is also worth noting that the shape of the distributions is preserved, meaning that

the rank of items inside the groups is preserved.

However, in order to work, this algorithm requires that most of the dataset

variables are continuous. For example, figure 4.5 shows an application of the DIR

algorithm to a dummy variable. In this case, we can see that the algorithm did not

affect it since the variable has only two values, and so it is not possible to repair it,

preserving the ranking. For this reason, if the dataset is mostly made of categorical,

not orderable variables, this algorithm is not able to mitigate bias.

4.3.3 Sampling

Sampling [41] is a modified version of the Reweighing algorithm, in which weights

are used to balance the dataset to remove discrimination. Sampling overcomes

the limit of Reweighing i.e. that not all the classifiers consider weights during the
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Figure 4.4. Application of DIR to numerical variable
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Figure 4.5. Application of DIR to categorical variable
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Figure 4.6. Sampling algorithm

learning process. This methods starts by partitioning the dataset in four groups: DP

(Deprived group with Positive labels), DN (Deprived group with Positive labels), FP

(Favored group with Positive labels) and FN (Favored group with Negative labels):

DP = {X ∈ D|X(S) = b ∧X(Class) = +} (4.6)

DN = {X ∈ D|X(S) = b ∧X(Class) = −} (4.7)

FP = {X ∈ D|X(S) = w ∧X(Class) = +} (4.8)

FN = {X ∈ D|X(S) = w ∧X(Class) = −} (4.9)

As for Reweighing, for each group, this algorithm computes the expected weight

(Wexp) and the observed weight (Wobs). The ratio between these two values will

be used to balance each group until the expected weight is reached. In particular,

in the case of a biased dataset, DN and FP will have an observed weight higher

than the expected weight, while DP and FN will be the vice-versa. In this case, the

algorithm will randomly remove items from DN and FP and randomly duplicate

items from DP and FN until the expected size is reached.

Figure 4.6 shows how the group disparity (Wexp

Wobs
) of each group converges to one

during the iterations of the algorithm. In particular, in about 1400 iterations the

algorithm is able to balance the groups.
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4.4 Experimental comparison of classic debias algorithms

This section shows the results of the analysis we have done using the methodology

described above. For this purpose, we have used the aif360 7 implementation of the

fairness metrics, Reweighing and DIR, while Sampling has been implemented from

scratch. We have then used: Pandas8 and Numpy9 for data manipulation, the

Scikit-learn10 implementation of the Logistic Regression classifier and other model

evaluation methods and Matplotlib11 and Seaborn12 for data visualization. All

the analysis has been done in Python.

4.4.1 Synthetic dataset

Figures 4.7, 4.8 and 4.9 shows the label and sensitive variable distribution

respectively for the unbiased, biased unbalanced and biased balanced versions of the

synthetic dataset.

Figure 4.10 shows the computed metrics for the three versions of the dataset.

Concerning the unbiased dataset, we can see that all the methods are able to preserve

the fairness of the classifier, leaving a high accuracy of predictions. Instead, about
7https://github.com/Trusted-AI/AIF360
8https://pandas.pydata.org/
9https://numpy.org/

10https://scikit-learn.org/stable/index.html
11https://matplotlib.org/
12https://seaborn.pydata.org/

https://github.com/Trusted-AI/AIF360
https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/index.html
https://matplotlib.org/
https://seaborn.pydata.org/
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Figure 4.8. Unbalanced biased dataset

0.0 1.0
Label

0

1000

2000

3000

4000

5000

0.0 1.0
Label

0

500

1000

1500

2000

2500

3000

3500
s

0
1

Figure 4.9. Balanced biased dataset
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the biased datasets, it is worth noting that the higher the bias, the lower the model’s

accuracy after bias mitigation. This can be explained by the fact that, after bias

mitigation, the model tries to assign positive labels with the same probability for

both groups. But, if the items of the unprivileged group with positive labels are

actually few, the model may create false positives for them. This fact is shown in

the classification report of the classifier after the application of Reweighing in figure

4.11. As we can see, the Precision value for the unprivileged group is low, while the

value of the Recall is high. This means that the model makes more false positives

trying to predict positive labels for the unprivileged group.

Another thing worth noting from the metrics comparison is that the DIR algo-

rithm performs better than Reweighing and Sampling in removing the bias. This

improvement, however, can be explained by the removal of the sensitive variable from

the dataset before training and testing the classifier in the case of DIR application.

Since randomly generated variables make this dataset, the sensitive variable, which

has been added to the dataset after its creation, is not correlated to any other

dataset variable. For this reason, removing the sensitive variable before training and

testing the model is sufficient, in this case, to improve the model’s fairness. This

fact is proven in figure 4.12, where we show the variables most correlated with the

sensitive variable s. In particular, we show the variables with a value of the Pearson
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correlation index higher than 0.1. As we can see, only the label is highly correlated

with s, and the bias present explains this in the dataset.

After this analysis, we combined Reweighing and DIR and check how this

combination performs in mitigating bias. In particular, the combination of these

methods has been implemented as follows:

1. First, we compute the DIR algorithm to the biased dataset

2. Then, we apply Reweighing to the transformed dataset

The comparison of this method with the others for the three versions of the

dataset can be seen in figure 4.13. As we can see, the performances of this method

are compared with the ones of DIR. In particular, we may conclude that combining

Reweighing and DIR, in this case, brings no advantage since we may obtain the

same results applying only the DIR algorithm.

From this analysis, we have seen that all these methods can improve the fairness

of the classifier. All the selected metrics, with the exception of the Theil Index,

reflect this improvement. The reasons why the Theil Index is not affected by these

methods can be found in the fact that this metric is an individual fairness metric.

Our methods, instead, consider and improve group fairness, trying to make the

classifier fair for both privileged and unprivileged groups. Finally, in this case, DIR

performs better than other methods. Still, we have seen that this improvement is

explained by the absence of correlation between the sensitive and unprotected ones.

4.4.2 Datasets with a single protected attribute

In this section, we describe the results of analysis conducted on real datasets

known in the literature to be biased [53]. In particular, in this section we focus on

datasets with a single protected variable. The selected datasets are: Adult Income,

Bank Marketing and German Credit.
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Figure 4.13. Comparison of Reweighing + DIR with the other methods for the Synthetic

Dataset
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Figure 4.14. Distribution of features of the Adult Dataset

In the following, we describe the results of the analysis applied to each of them.

Adult Dataset

Figure 4.14 shows the distribution of the sex and income features and the

distribution of income for the privileged and unprivileged groups. As we can see,

the distribution of income for both groups is unbalanced. This could be a symptom

of bias.

Figure 4.15 shows the performances of the algorithms for this dataset. As we

can see, Sampling and Reweighing are able to improve the fairness of the classifier,

while DIR performs worse. The worst performances of DIR can be explained by

the fact that Adult is mostly made of categorical variables, which has been one hot

encoded before being input to the classifier. One Hot Encoding is a pre-processing

data transformation technique that transforms a categorical variable S to a set of n
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Figure 4.15. Metrics comparison for the Adult Dataset

dummy variables (variables whose values are zero or one), where n is the number of

values of S. Each dataset item will have only one of the n variables set to one, i.e.

the variable corresponding to the original value of S.

As for the synthetic dataset, we then tried to combine Reweighing and DIR.

Figure 4.16 shows the comparison of all these methods for both one hot encoded

and numerical datasets. As we can see in both figures, adding the Reweighing

transformation to DIR gives us no advantages. In particular, we can see that for the

one-hot encoded dataset, the performances of Reweighing + DIR are worse than

Reweighing or Sampling. For the numerical dataset, instead, the performances are

comparable to DIR.

One last thing worth noting is that when the methods can improve the classifier’s

fairness (like in the case of the numerical version of the dataset), the classifier’s

accuracy tends to decrease. This phenomenon has already been noticed for the

synthetic dataset. It can be explained by the fact that the model is trying to predict

positive labels with the same probability for both groups. But, in the case of the

unprivileged group, it may predict more false positives.

Bank Marketing Dataset

Figure 4.17 shows the sensitive variable’s and the label’s distributions and how

the label is distributed between the two groups. From the figure, we can see that,

although the privileged group is much smaller than the other, the favourable label is
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Figure 4.16. Reweighing + DIR comparison on the Adult Dataset

more present in the privileged group. This is a symptom of bias.

Figure 4.18 shows the performances of the algorithms for this dataset. Since

this dataset is made mostly by categorical variables, DIR is not able to improve the

fairness of the classifier. In this case, we are not able to consider only numerical

variables (like we have done for the Adult) because they are too few for proper

classification. Reweighing and Sampling instead can mitigate the classifier’s bias,

preserving the accuracy of the predictions. Combining Reweighing and DIR, also

in this case, is of no advantage since it is not able to mitigate the bias and give us

results comparable to DIR.

Finally, we can note that in this case, we are dealing with a dataset not much

biased (like the Adult was), and so improving the fairness of the classifier does not

have a big impact on the accuracy of the predictions.

German Credit Dataset

The last selected dataset with a single protected variable is the German Credit

dataset. As we can see from figure 4.19, this dataset, differently from the others,

is not particularly biased. However, we have selected it to see if the methods can

also detect a small classifier’s small bias. Figure 4.20 shows the metrics for this

dataset. In this case, all the methods can mitigate the bias. Since the dataset is not

only made of categorical variables, also DIR performs well. As before, combining

Reweighing and DIR does not give particular advantages since the performances of
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Figure 4.17. Distribution of sensitive variable and label of the Bank Dataset
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Figure 4.20. Metrics comparison for the German Dataset

Reweighing alone are better. Finally, because the original classifier’s bias was not so

high, applying bias mitigation methods does not impact the prediction’s accuracy.

4.4.3 Overall considerations

These analyses on real datasets confirmed the hypothesis we have made on the

synthetic dataset. In particular:

1. All the selected methods, if the dataset is suitable for their application, can

improve the fairness of the classifier.

2. All the selected metrics, with the only exception of the Theil Index, reflecting

the improvement of the classifier’s fairness

3. Combining Reweighing and DIR is of no advantages since the performances

we obtain are comparable with those of the single methods.

In addition, we have seen that DIR is not able to improve the fairness of the

classifier if the dataset is mostly made of categorical bias. Instead, Reweighing

and Sampling are not affected by this characteristic and so can be considered more

stable.
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4.5 Debiaser for Multiple Variables

Sampling was originally proposed in [41] only for datasets with a single protected

variable, in which it was possible to identify the groups DP, DN, FP and FN. As a

novel contribution, we have extended this algorithm to a multiple sensitive variable

cases, proposing a new method, the Debiaser for Multiple Variables (DEMV). In

particular, we consider each group formed by the combination of each possible value

of the sensitive binary variables and each value of the label. Formally, let S be the

set of all the possible values s1, s2, . . . , sn of the sensitive variables S1, S2, . . . , Sn

and let +,− ∈ L respectively the positive and negative labels of the dataset D. We

define:

GP =
(
S ∪ {+}
n+ 1

)
(4.10)

GN =
(
S ∪ {−}
n+ 1

)
(4.11)

as the sets of all the possible combinations of the n sensitive variables with

positive and negative labels respectively. The algorithm, then iteratively adds or

removes items from each group g = {X ∈ D|X[S1, S2, . . . , Sn, L] = c, c ∈ GP ∨GN}

until the expected size is reached.

The pseudo-code of the DEMV is given in the listing 1. This function is defined

as a recursive function that iteratively calls itself, adding each time a new condition

for the definition of the sampling group. This function takes as input the dataset

D, the binary sensitive variables S1, . . . , Sn, the binary label L and some others

parameters that are useful for the recursion: a counter i initially set to 0, an array

G initially empty and a boolean condition initially set to true. Lines from 2 to 9

defines the base condition of the function. In particular, we check if the value of the

counter i is equal to the number of sensitive variables. If so, we iterate the possible

values of the label (which are 0 or 1) and create a group g made by the condition

created during the recursion and the value of L. Then, we compute Wexp and Wobs

like for Reweighing and then balance this group (using the algorithm defined in the

listing 2). Finally, we add g to the array G (that we use to keep track of all the
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sampled groups) and return G. Lines from 10 to 15 defines instead the recursive

part of the function. In particular, if the value of i is not equal to the number of

sensitive variables, we increment the value of i by one and append to G the result of

two different recursive calls. These calls differ from each other only in the condition

passed as input. In fact, in one call, we pass a condition equal to the previous one

plus the value of Si equal to 0, while in the second we pass a condition equal to

previous one plus the value of Si equal to one. Since we are dealing with binary

attributes, these are the only possible values that the sensitive attributes can have.

Defining the conditions in this way allows us to consider all the possible sampling

groups. Finally, lines from 16 to 20 defines the returning condition of the functions.

In particular, since we are dealing with binary attributes, the maximum number of

samples obtainable from the combination of n sensitive variables plus the label is

2(n+1). So, if the size of G is exactly equal to 2(n+1), then it means that we have

considered and balanced all the groups, and so we can return the final sampled

dataset DS . Otherwise, it means that we are in the middle of the recursive tree, and

so we simply return G, that will be again merged with the result of other recursive

functions.

Figure 4.21 shows how the algorithm builds the conditions for the sampling

groups in case on n = 2. In particular, each node represents a new condition added

to the initially True condition. We set the initial condition to True because it is

unaffected by the And conjunctions. Each level of the tree represents a new recursion

step where the value of the i counter is incremented by one. It is worth noting that

the value of the counter is incremented before starting a new recursion call. So, in

the root node i will be equal to zero and then will be incremented before making

the recursive call. The leaf of the tree are the groups that will be balanced and then

re-merged to make the unbiased dataset. In particular, each group will be merged

with his sibling when the recursive calls end and we start traversing back the tree.

Algorithm 2 is instead the pseudo-code of the group balancing function. We show

this algorithm separately from the sampling because it is independent from the way

a group has been created and can be used also with other group creation policies.

This function takes as input a group g, the expected size Wexp and the observed



4.5 Debiaser for Multiple Variables 53

S1 = 0

S2 = 0

And

S2 = 1

And

S1 = 1

S2 = 0

And

S2 = 1

And

SL = +

And

SL = -

And

SL = +

And

SL = -

And

SL = +

And

SL = -

And

SL = +

And

SL = -

And

g1 g2 g3 g4 g5 g6 g7 g8

True

And And

Figure 4.21. Sampling recursion tree for n = 2

size Wobs and returns the same group g balanced. In particular, the core of this

function is the while loop that goes from line 1 to line 6. This loop checks if the

ratio between the expected size and the observed size is equal to one (this means

that the size of the group is equal to the expected one). If not, then two cases are

possible. If the ratio is greater than one, it means that the size of the group is less

than the expected one. In this case, we randomly duplicate an item from the same

group g. Otherwise, if the ratio is less than one, it means that the size of the group

is greater than the expected one. In this case, we randomly remove an item from

the group. Finally, when the group is balanced, we simply return it.

Figure 4.22 shows an example application of DEMV. In particular, in this case

there were two sensitive attributes and we can see that eight groups has been created.

These groups are generated by the combination of the values of the two variables

and the values of the label (22+1). The different shape of the curve compared to

figure 4.6 is caused by the rounding applied to the ratio between the expected and

observed size in order to converge to one.
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Algorithm 1: Debiaser for Multiple Variables
Input: (Dataset D, Binary sensitive variables S1, S2, . . . , Sn, Binary label L,

i = 0, G = [], condition=true)

Output: Sampled dataset DS

1 n = length({S1, S2, . . . , Sn})

2 if i == n then

3 foreach l ∈ L do

4 g = {X ∈ D| condition ∧ L == l}

5 Wexp = |{X ∈ D|condition}|
|D|

· |{X ∈ D|L == l}|
|D|

6 Wobs = |g|
|D|

7 balance g using Wexp and Wobs

8 add g to G

9 return G

10 else

11 i = i+ 1

12 G1 = sample(D,S1, . . . , Sn, i, G, condition = condition ∧ Si == 0)

13 G2 = sample(D,S1, . . . , Sn, i, G, condition = condition ∧ Si == 1)

14 append G1 to G

15 append G2 to G

16 if length(G) == 2(n+1) then

17 DS = merge all g ∈ G

18 return DS

19 else

20 return G
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Algorithm 2: Group balancing algorithm
Input: (Group g, Expected size Wexp, Observed size Wobs)

Output: Balanced group g

1 while Wexp\Wobs ! = 1 do

2 if Wexp\Wobs > 1 then

3 randomly duplicate item i in g

4 else if Wexp\Wobs < 1 then

5 randomly remove item i from g

6 recompute Wobs

7 return g
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Figure 4.22. Application of DEMV on a real dataset
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4.5.1 Comparison with established methods

Now, we describe the analysis made on datasets with more protected variables.

In particular, we check if the Debiaser for Multiple Variables is able to mitigate the

bias as well as the other established methods. In addition, we want to evaluate the

ability of the method to mitigate the bias towards more complex groups identified

by the combination of more sensitive values.

In order to better compare the performances of our method, we also tested

the classic Sampling algorithm using a modified version of the selected datasets.

Specifically, we added a new variable to the dataset called flag, which is equal to 0

if all the sensitive variables are equal to 0 and 1 otherwise. Formally, flag is defined

as follows:

flag =


0 if S1, S2, . . . , Sn = 0

1 otherwise
(4.12)

This variable act as a flag, indicating if we are dealing with a member of the

unprivileged group (flag = 0) or not (flag = 1). Classic Sampling was then applied

using this variable as the sensitive variable for creating balancing groups.

The selected datasets are the following: ProPublica Recidivism (COMPAS)

dataset, an extended version of the German Credit dataset which considers also

the sex variable and an extended version of the Adult Income dataset which

considers also the race variable

COMPAS

Figure 4.23 shows the distribution of the label and the sensitive variables in the

dataset and the distribution of the label between the two sensitive groups. As we

can see, the probability of recidivism is higher for non-caucasian men. Figure 4.24

shows the performances of the methods for this dataset. Before commenting on

them, it is worth noting that, in the case of multiple sensitive variables, [25] suggests

applying the DIR transformation to the joint probability distribution of the sensitive

variables. For this reason, only for DIR we have first computed the joint probability

distribution of the sensitive variables and then applied the fairness metrics using this

new variable as a reference. From the picture, we can see that Sampling performs



4.5 Debiaser for Multiple Variables 57

Not caucasian Caucasian
race

0

500

1000

1500

2000

2500

3000

3500

4000

co
un

t
Observations by race

Male Female
sex

0

1000

2000

3000

4000

5000

co
un

t

Observations by sex

Not recidiv Recidiv
two_year_recid

0

500

1000

1500

2000

2500

3000

3500

co
un

t

Observations by recidivism

Not recidiv Recidiv
two_year_recid

0

10

20

30

40

50

Pe
rc

en
ta

ge

Distribution of recidivism for non caucasian men

Not recidiv Recidiv
two_year_recid

0

10

20

30

40

50

60

Pe
rc

en
ta

ge

Distribution of recidivism for caucasian women

Figure 4.23. COMPAS label distributions

very well in removing bias, while Reweighing behaves a little worse. Instead, DIR

tends to reverse the bias of the classifier favouring the previously unprivileged group,

and the same is for the combination of Reweighing and DIR. Comparing DEMV

with the classic Sampling version we can see that our method performs better for all

the metrics. In fact, DEMV is the method performing better of all, reaching values

that are near to the optimal ones. Finally, we can see that since the original bias is

not so high, the Balanced accuracy is not much affected by all the bias mitigation

methods.

German Credit Dataset

Figure 4.25 shows the distribution of labels and sensitive variables for this dataset.

From the figure, we can see that there is not a high bias in data. Figure 4.26 shows

the performances of the methods. As for the COMPAS dataset, also in this case
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Figure 4.24. COMPAS metrics comparison

we can see that DEMV is the method performing better on all metrics, reaching

values that indicate the absence of bias. Reweighing and DIR are the methods that

perform worse and combining them lead us to even worse results. Finally, we can

see that, since the bias is not very high, all the methods do not impact the Balanced

Accuracy much. As for the other cases, since DEMV is the method improving more

the fairness, it is also the method that impact more on the Balanced Accuracy.

Adult Dataset

From figure 4.27, we can see that the number of black women having an income

higher than 50k dollars a year is minimal. This is a symptom of high bias in the

data. Figure 4.28 confirms this hypothesis. From this picture, we can see that the

bias of the classifier trained with unprocessed data is very high. Like for the single

variable case, the bias of this dataset is more difficult to improve. In particular, we

can see that all the methods are not able to improve the fairness much. However,

we can see that DEMV is the method performing better in all metrics together with

Reweighing. Specifically, we can see that the values of all the metrics are almost the

same. Like for the single variable case, DIR is not able to improve the fairness of the

classifier, since the dataset is mostly made of categorical variables. As for the other

cases, combining Reweighing and DIR does not help since it gives performances that

are at most comparable to the other methods. Finally, comparing our method with

the classic version of Sampling, we can see that it performs better on all metrics.
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Figure 4.25. Distribution of sensitive variables and label for the German Credit
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Figure 4.26. Methods performances for German Credit
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Figure 4.27. Distribution of sensitive variables and label for the Adult Income dataset

In particular, concerning Statistical Parity and Disparate Impact we see that the

difference between the two methods is more marked.

4.5.2 Overall considerations

These analyses on datasets with a more complex bias confirmed some of the

single sentive variable dataset’s hypotheses. Still, they also provide us with some

more points of analysis. In particular, we can confirm that all the metrics, except

the Theil Index, reflect the improvements in the classifier’s fairness after applying all

the methods. Again, we can confirm that combining Reweighing and DIR does not

give us performances that are better than the ones obtained by the single methods.

However, we have seen that, in the case of multiple sensitive variables, the method

performing better in our experiments is the DEMV, which is our proposed extension

of the Sampling algorithm proposed in [41]. In particular, we have seen that this
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Figure 4.28. Metrics comparison for the Adult Dataset

method performs better than the standard Sampling with a flag variable. Reweighing

is also able to improve the fairness of the classifier, but it is more difficult in case

of high bias. Instead, DIR confirms not being able to improve the fairness if the

dataset is mostly made of categorical variables. Otherwise, if the variables are mostly

numerical, DIR is able to improve also a high level of bias, but it may also tend to a

reverse bias, where the original privileged group became unprivileged and vice-versa.

4.6 Final considerations

These analyses conducted on several heterogeneous datasets allowed us to make

the following conclusions:

1. The Theil Index is the only metric not able to reflect the improvements in the

fairness of the classifier. This behaviour can be explained by the fact that this

metric is an individual fairness metric. Our methods, instead, consider group

fairness improvements. Indeed, the other metrics are group fairness metrics,

and they are all able to reflect the fairness improvements.

2. Concerning the group fairness metrics, regardless of their belonging to the

WAE or WYSIWYG, they are all able to reflect the changes in the fairness of

the classifier.

3. Concerning datasets with a single sensitive variable, we may conclude that
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Reweighing and Sampling are more suited than DIR for bias mitigation. DIR

is able to improve the fairness of the classifier only if the dataset is not made

mostly of categorical variables. At the same time, Reweighing and Sampling

are not affected by the type of variables of the dataset.

4. Concerning datasets with multiple sensitive variables, DEMV has been proven

to be the best method for improving the fairness. At the same time, Reweighing

has more difficulty in improving the fairness if the original bias of the classifier

is very high. DIR is confirmed not able to improve the fairness if the dataset

is mostly categorical.

5. Our custom extension of Sampling (DEMV) is able to improve the fairness of

the classifier in case of multiple sensitive variables, also in case of high original

bias. This method is also able to keep a good level of accuracy of the classifier.

6. Concerning the dataset’s fairness metrics (not shown during the description

of the analyses), Reweighing, Sampling and DEMV are able to improve them,

while DIR does not affect them.

7. For all the datasets, we have seen that the more a method is able to improve the

original fairness of the model, the more it lows the accuracy of the predictions.

This trade-off can be explained by the fact that, after bias mitigation, the

model is trying to classify all the groups with the same probability, but this

can lead to a higher number of false positives and false negatives.

8. In general, combining Reweighing and DIR is of no advantage since we are able

to obtain the same or better results with at least one of the other methods.

Reconnecting with the working context of chapter 3, we may conclude that the

group fairness metrics are all able to describe the fairness of the classifier in a proper

way inside the pipeline. Reweighing, Sampling and DEMV seemed to be more stable

methods for improving the fairness of the classifier since they are not affected by

any particular characteristic of the variables. Reweighing has the downside that

it requires the classifier to consider weights related to data, while Sampling and

DEMV does not. Sampling and DEMV, instead, may delete useful items during
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the group sampling process, but from the analysis of the accuracy, it seemed that

it never affected the Quality of predictions QR. For this reason, a user may choose

to use Reweighing if the classifier accepts weights or Sampling (DEMV in case of

multiple sensitive variables) instead. DIR may be considered as well, but only for

datasets with mostly numerical variables. Finally, concerning the Computational

complexity QR, Reweighing may be considered linear in the number of items of the

dataset since it only applies a value to all the dataset’s items. Sampling and DEMV

instead requires iterating each group multiple times in order to re-balance them

properly. This process may require much time if the groups are many and are very

unbalanced. For this reason, Reweighing may be considered a preferable choice if

computational complexity is an issue and the machine learning classifier is suitable,

otherwise both Sampling in case of single sensitive variable and DEMV in case of

multiple sensitive variables, are able to mitigate the bias in a proper way in any of

the cases described above.
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Chapter 5

Conclusions and future works

In this thesis, we have analysed the quality characteristics of DS workflows and

made an in-depth analysis of the Bias and Fairness of machine learning systems.

First of all, we have identified the QR and shown how they can be used to define

our concept of Quality in DS pipelines. Then, we gave a high-level example of how

the selected requirements can actually influence the user’s decisions in all the steps

of the workflow. Then, we made an in-depth study of one of the selected QR, i.e.

the Bias and Fairness of machine learning models. First, we have made a survey of

the different definitions, metrics and mitigation approaches existing in the literature.

Then, we selected three established pre-processing methods to improve the fairness of

the classifiers, namely Reweighing, Sampling and Disparate Impact Remover (DIR),

and compared their performances on several datasets using some selected fairness

metrics. We made an extensive experimental analysis of such methods in order to

identify the strengths and limits of all of them. From this analysis, we concluded

that Reweighing and Sampling are the more suited methods for bias mitigation in

case of single sensitive variable since they are more stable and are not affected by any

characteristic of the dataset. As a novel contribution, we have then proposed and

tested the Debiaser for Multiple Variables (DEMV), an extension of the Sampling

algorithm for datasets with multiple sensitive variables. We provided a mathematical

formulation and the pseudo-code of it. Finally, we have compared our new method

with the other established algorithms obtaining comparable or even better results.
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5.1 Future works

The future works are manifold and can be distinguished in works related to

the High Quality and works related to Bias and Fairness. Concerning the High

Quality of the DS pipelines, from the analysis of such workflows, we can conclude

that they can be profitably modelled as product line architectures. Over the last

two decades, software product lines architectures have been successfully used in

industry for building families of systems of related products, maximizing reuse, and

exploiting their variable and configurable options [15]. Product line architectures act

as a blueprint for building software, allowing stakeholders to define a common set of

features and variation points [8]. A feature can be defined as a component, a building

block that performs a specific task, that can be combined with other components to

create a more complex system. Variation points are the elements that distinguish a

final product from another. Based on the user’s requirements, variation points may

add, change or remove a feature from the product line architecture. DS workflows

have a similar structure in terms of general tasks (features) to accomplish. At the

same time, the final implemented pipeline can be very different depending on the

QR, defined by the user, that will impose extra steps (variation points) needed to

satisfy them. From this observation, it is natural to model DS workflow as a product

line architecture. In fact, using this formalism allows us to define some features

and variation points driven by the defined requirements. As a long term work,

we aim to implement the described modelling framework. The required working

steps are many: from an in-depth study of all the requirements and metrics to the

definition of a DS workflow formalism that extends the product line architecture

and embeds the defined quality metrics in the variation points. The final step will

be the implementation of the described DS pipelines using model-driven techniques.

The final modelling framework will help experts to build their pipelines satisfying,

high-quality requirements.

Concerning Bias and Fairness, we plan to extend our experimental analysis to a

larger set of cases. First of all, we want to see how the size of the dataset impacts the

Reweighing and Sampling methods since both algorithms relies on the dimensions of

both privileged and unprivileged groups. Then, we aim to see how feature reduction
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techniques (such as PCA [40]) may improve the performances of DIR on datasets

with mostly categorical variables. Finally, we want to extend our analysis also on

tasks different from classification, such as regression or natural language processing.

Our final goal is to use the results of these analyses for the implementation of our

modelling framework in order to select the best methods to measure and improve

the fairness for any type of task.
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