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1 Introduction

Detecting anomalies in data is a fundamental task with a wide range of high-impact applications in
different domains, as finance, security, and health. In the past two decades, there has been a growing
interest in anomaly detection in data represented as graphs, due to their natural ability to capture and
represent real-world relationships. At first, the techniques mainly focus on static graphs, which can
capture a single snapshot of the data at a certain time. Thus, to capture the dynamic and constantly
evolutionary aspects of the real world, the researchers have shifted their attention to dynamic graphs,
which evolve.

The report aims to explore the use of reinforcement learning techniques, in particular those based on
dynamic programming, to perform anomaly detection on temporal graphs. Since the report collects the
first application of these techniques in this new scenario, we explored its feasibility by testing on a set
of small undirected graphs and by using dynamic programming techniques. These choices allow us to
obtain a first realistic evaluation of the method’s performance and fostering the number of computational
resources needed. A chapter will be dedicated to the implementation of the method and the analysis of
the results obtained by the experimentation.

The main contributions of the report are:

∙ proposing the formalization for the first reinforcement learning approach to anomaly detection on
temporal graphs, laying the foundations for further developments;

∙ defining an iter to produce sequences of temporal graphs starting from a graph generative model;

∙ providing the implementation of the algorithm, that has a good performance;

∙ defining an experimental protocol to test the goodness of the method;

∙ extending the proposed approach to an unsupervised setting, trying to generalize as much as
possible.

1.1. Report organisation

The report will be organized as follows:

∙ in Chapter 1 we discuss all the background concepts needed to formalise the anomaly detection
in temporal graphs and understand the used reinforcement learning techniques;

∙ Chapter 2 presents our theoretical framework regarding the application of dynamic programming
on temporal graphs to perform anomaly detection;

∙ Chapter 3 shows the practical implementation of the developed technique, the evaluation protocol
that we carried and the achieved results;

∙ in Chapter 4 we summarise the research that has been conducted, the learned lesson and the
possible future developments.
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1.2. Remarks

We like to note that the presented work represents an initial exploration of a wider and more complete
yet complex project. Thus, the main objective of this report is formalising the anomaly detection problem
on the dynamic graphs considering a reinforcement learning approach. For this reason, we explore
a simple but well-defined application in controlled experimental settings which allows us to evaluate
consistently the benefit and the drawbacks of this approach. We highlight that the general aim of the
report must be framed into a more complete project where the objective is to create an efficient and
robust but yet flexible detector that can be practically used in detecting real-time anomalies.

Territori Aperti
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2 Background

This chapter presents the background knowledge, focusing on the existing techniques, for both anomaly
detection in static/temporal graphs and reinforcement learning. Moreover, a focus on graph generation
techniques is provided. The aim is to provide a general overview and a basis for the comprehension of
the report.

Data objects cannot always be treated as independent points lying in a multi-dimensional space, but
they may show inter-dependencies that need to be considered. Graphs provide a powerful instrument
for capturing these relations among inter-dependent data objects. Four main reasons make anomaly
detection on graphs fundamental, as explained in [3]:

∙ Inter-dependent nature of data: as mentioned above, data are often related to each other, and
this represents an important factor to consider when detecting anomalies.

∙ Powerful representation: graphs are naturally able to represent inter-dependencies through
the introduction of links between the related objects. Besides, graphs enable to represent more
complex structures thanks to node and edge attributes.

∙ Relational nature of problem domains: the anomalies themselves could show to be related one
another, and in order to understand it a graph representation is more suitable.

∙ Robust machinery: graphs may serve as more adversarially-robust tools, since fitting in a net-
work without having the complete knowledge of it is hard.

It is not possible to give a unique definition of the anomaly detection problem, since it can be defined in
various way according to the specific context or application. Nevertheless, a general definition for the
graph anomaly problem is presented in [3]:

[General Graph Anomaly Detection Problem] Given a (plain/attributed, static/dynamic) graph
database, find the graph objects (nodes, edges or substructures) that are rare and that differ signifi-
cantly from the majority of the reference objects in the graph. Usually, a graph object is labelled as
anomalous if its rarity score exceeds a given threshold.

2.1. Anomaly Detection in Static Graphs

In this section we will treat the anomaly detection problem in static graphs, where the main objective is
to spot anomalous network entities given the entire graph structure. In [3] this problem is defined as:

[Static graph anomaly detection problem] Given the snapshot of a (plain or attributed) graph database,
find the nodes and/or edges and/or substructures that are “few and different” or deviate significantly from
the patterns observed in the graph.

We will study anomaly detection in static graphs under two different settings: attributed graphs, where
nodes and/or edges have features associated, and plain graphs, where only the structure is taken into
account.

Territori Aperti
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2.1.1. Anomaly Detection in static plain graphs

In a plain graph, the only information is its structure, so the methods of anomaly detection rely solely
on the structure to spot anomalies and find patterns. We can divide the patterns in structure-based
patterns and community-based patterns.

The structure-based methods in turn can be divided in feature based and proximity-based.
The feature-based approaches exploit the graph structure to extract structural graph-centric features

for performing outlier detection. These methods transform the graph anomaly detection problem into the
outlier detection problem. The features that can be extracted are of various types: node-level features,
as in and out-degree, betweenness centrality, closeness centrality; or node-group-level features, such
as density, modularity; or global measures, such as the number of connected components, global
clustering coefficient, average node degree and so on.

The main idea of the proximity-based methods is to exploit the graph structure to measure the close-
ness of the objects in the graph, assuming that close objects are likely to belong to the same class.
Some of the most widely used graph-closeness measures are based on random walks and their ex-
tensions. A prominent example in this sense is the PageRank [4], one of the most popular algorithms
based on random walks, whose aim is to measure the importance of the nodes in a graph.

Community or cluster-based methods rely on finding densely connected groups of nodes in the
graph, and spot those nodes and/or edges that have connections across communities. In this case,
nodes/edges can be considered anomalous if they do not belong to one particular community. An ex-
ample of real-world application includes publication networks, where the aim is to find those papers
that authors from different research communities write. Clearly, the main tasks are how to find the
communities of a given node and how to quantify the level of the given node to be a bridge node [5].

2.1.2. Anomaly Detection in static attributed graphs

Certain types of data allow having a richer graph representation, in which nodes and/or edges have
attributes. For example, it is possible to think of social networks in which the interests of each user
(node) are expressed.

For these graphs, it is possible to exploit both the structure and the attributes to detect anomalies.
These methods can be grouped into structure-based, community-based, and relational learning-based
methods.

One of the earliest works on attributed graph anomaly detection [6] highlights two problems: find-
ing unusual substructures in a given graph and finding unusual subgraphs given a set of subgraphs.
Structure-based approaches aim to identify substructures in the structurally rare graphs, both from the
point of connectivity and attributes. The idea is to look at the most frequent substructures, considering
them as normal.

The community-based methods aim to identify those nodes in a graph whose attribute values deviate
significantly from the other community members they belong to. Both structural aspects and attributes
aspects are considered when identifying communities. Due to this dual aspect, some methods aim to
detect outliers and communities simultaneously, while others perform first attributed graph clustering
and then outlier detection.

Relational learning-based methods include network-based classification algorithms, whose main idea
is to exploit the relationships between objects to assign them into classes (usually normal and anoma-
lous). Classification is the problem of labeling data instances according to their observed attributes:
anomaly detection can be formulated as a classification problem. When the labeled data is reasonable
enough, fully supervised classification can be employed; when labeled data is scarce but available,
semi-supervised classification can be used.

In traditional machine learning approaches, the instances are assumed to be identical independent
distributed, ignoring the dependencies. Relational classification instead aims at labeling objects that
carry important information in their relationships. Generally, when labeling a node, these methods

Territori Aperti
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exploit the class labels of its neighbors, the node attributes, and/or the attributes of the node’s neighbors.
Relational classification methods can be categorized into local and global. The local algorithms focus

on building a local predictive model for classifying a node, often using iterative inference procedures
to classify unlabeled objects. Global algorithms, instead, aim at defining a global formulation of class
dependencies.

2.2. Anomaly Detection in Temporal Graphs

For what concerns dynamic graphs, before illustrating the anomaly detection problem, we can define
it as in [1]: [Dynamic Graph] We can define a graph series G (or dynamic graph) as an ordered set of
graphs with a fixed number of time steps. Formally, G = {𝐺𝑡}𝑇𝑡�	, where T is the total number of graphs,
and 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡 ⊆ (𝑉𝑡 × 𝑉𝑡)), with 𝑉𝑡 the vertex set at time step t and 𝐸𝑡 the edge set at time step t.
Graph series where 𝑡 → ∞ are called graph streams.

The anomaly detection problem on dynamic graphs can be summarized as follows [3]: [Dynamic
Graph Anomaly Detection Problem] Given a sequence of plain/attributed graphs, find (i) the timestamps
that correspond to a change or event, as well as (ii) the top-k nodes, edges, or parts of the graphs that
contribute most to the change (attribution).

According to the application domain, the requirements of the algorithm vary, but there are some
properties that are generally desirable:

∙ Scalability: due to the size and volume of the graphs produced, ideally the algorithms should be
linear or sub-linear with respect to the size of the input graphs. In the dynamic setting it is also
preferable that the algorithm is linear with respect to the size of the update of the input graphs.

∙ Sensitivity to structural and contextual changes: the algorithms should be able to distinguish
structural differences among the considered input graphs as well as changes in other properties
of the graphs, such as labels.

∙ Awareness of the importance of change: the algorithms should be aware of the type and extent
of the change, giving more importance to changes in fundamental nodes, edges or other graph
attributes, rather than changes in less important structures.

2.2.1. Types of anomalies

Following [1], we identify and formalize four types of anomalies that occur in dynamic networks. Since
the graphs are dynamic, vertices and edges can be removed at every time step: for simplicity, we will
assume that vertex/edge correspondence is preserved across different time steps thanks to unique
labelling of vertices/edges. We now describe the possible four types of anomalies.

Anomalous vertices

Anomalous vertex detection aims to find those vertices that have an irregular evolution if compared to
the other vertices in the graph. Generally, each method defines a scoring function for evaluating the
vertices behavior time step to time step. The scoring function depends on the particular application.
The set of anomalous vertices is defined as:

[Anomalous vertices] Given G, the total vertex set 𝑉 =
𝑇⋃︀
𝑡�	

𝑉𝑡 and a specified scoring function 𝑓 :

𝑉 → R, the set of anomalous vertices 𝑉 ′ ⊆ 𝑉 is a vertex set such that ∀ v’ ∈ 𝑉 ′, |𝑓(𝑣′)− 𝑓 | > 𝑐�, where
𝑓 is a summary statistic of the scores f(v), ∀ v ∈ 𝑉 .

Differently from static graphs, where the single snapshot allows only intragraph comparison, dynamic
graphs allow the temporal dynamics of the vertices to be included, introducing new types of anomalies.
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This type of anomaly detection is typical for identifying vertices that contribute the most to a discov-
ered event, and for observing the shifts in community involvement.

Anomalous edges

Similarly to vertex detection, edge detection aims to find those edges that have an irregular behavior
with respect to the other edges. Also in this case, methods employ an application-dependent scoring
function to rate the level of anomalousness of the edges. Anomalous edges detection can be defined
as:

[Anomalous edges] Given G, the total edge set 𝐸 =
𝑇⋃︀
𝑡�	

𝐸𝑡, and a specified scoring function 𝑓 : 𝐸 →

R, the set of anomalous edges 𝐸′ ⊆ 𝐸 is an edge set such that ∀ e’ ∈ 𝐸′, |𝑓(𝑒′)− 𝑓 | > 𝑐�, where 𝑓 is a
summary statistic of the scores f(e), ∀ e ∈ 𝐸.

In a static graph it is possible to find the distribution of the edge weights, consequently assigning
a score to each edge according to the probability of its weight. In dynamic graphs two new types of
irregular edge evolution can be found: (1) abnormal edge evolution, where the weight of a single edge
has irregular fluctuations and peaks, and (2) appearance of edges between two vertices that typically
are not connected or that belong to different communities.

Applications of this type of anomaly detection include finding unlikely social interactions and identify-
ing anomalous traffic patterns in a graph where vertices are road intersections and edges are roads.

Anomalous subgraphs

Differently from vertices or edges, it is not possible to enumerate every possible subgraph in each
single graph, so a different approach is required. Usually, the subgraphs that are identified and tracked
are constrained, for example, to those found through community detection methods. Consequently,
matching algorithms are required to keep track of the evolution of the subgraphs.

Once a set of subgraphs has been determined, it is possible to perform intragraph comparison or
intertime point comparison to assign scores to each subgraph, measuring the change in the subgraphs
between adjacent steps. Clearly, typical subgraph comparison methods must be extended to incorpo-
rate the additional information coming from the dynamics of the network. For this reason, instead of
finding structures that are unique in a single graph, the idea is finding also structures that are unique
to a single graph in a series of graphs. These types of anomalies are unique to dynamic networks,
and include communities that split, merge, disappear and so on. Two examples in this sense are the
shrunken communities, that is when a single community loses a significant number of vertices between
time steps, and split communities, when a community divides into several distinct communities.

[Anomalous subgraphs] Given G, a subgraph set 𝐻 =
𝑇⋃︀
𝑡�	

𝐻𝑡, and a specified scoring function 𝑓 :

𝐻 → R, the set of anomalous subgraphs 𝐻 ′ ⊆ 𝐻 is an subgraph set such that ∀ h’ ∈ 𝐻 ′, |𝑓(ℎ′)−𝑓 | > 𝑐�,
where ℎ̂ is a summary statistic of the scores f(h), ∀ h ∈ 𝐻.

Clearly, looking also at the definition, it emerges that what constitutes an anomalous subgraph de-
pends on the application context.

Event and change detection

These two types of anomalies are exclusively found in dynamic graphs. Event detection has the object of
identifying time points that are significantly different from the rest, that is isolated points in time in which
the graph is different from the graphs at the previous and following time steps. [Event detection] Given
G and a scoring function 𝑓 : 𝐺𝑡 → R, an event is defined as a time point t, such that |𝑓(𝐺𝑡)−𝑓(𝐺𝑡−	)| >
𝑐� and |𝑓(𝐺𝑡)− 𝑓(𝐺𝑡�	)| > 𝑐�.
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Figure 2.1: The graph series (a) is an example of event detection, the graph series (b) is an
example of change detection; picture taken from [1].

The task of finding the cause of the event is not part of event detection, but once the time points for
events have been identified it is possible to find the potential causes applying techniques for anomaly
detection in static graphs. Event detection has a wide variety of applications, from biology to finding
frames in a video that are unlike the others.

Change detection is somehow complementary to event detection: while events represent isolated
incidents, change points mark a point in time where the entire behavior of the graph changes and is
maintained.

[Change detection] Given G and a scoring function 𝑓 : 𝐺𝑡 → R, an change is defined as a time point
t, such that |𝑓(𝐺𝑡)− 𝑓(𝐺𝑡−	)| > 𝑐� and |𝑓(𝐺𝑡)− 𝑓(𝐺𝑡�	)| ≤ 𝑐�.

One of the most popular applications of change detection is in networks modeling human interactions,
such as communication and co-authorship networks.

In order to understand better the difference between change and event detection, we can refer to the
following picture taken from [1]:

In event detection the aim is to find a graph that differs from those that precede and succeed it,
an isolated case, while in change detection the objective is to spot a shift in the graph series that is
maintained.

2.2.2. Methods

The abundance of time-evolving graphs in the recent years has led to a great interest in them, so many
researches have been carried on in this field.

Most of the methods of the last two decades have a common two-stage methodology: in the first
stage, the aim is to generate data-specific features, and this is done through a mapping that goes
from the domain-specific representation (the graph) to a common data representation (a vector of real
numbers).

Stage 1 =⇒ Ω : 𝐺𝑡 → [R𝑑]𝑡, ∀ 𝐺𝑡 ∈ G, (2.1)

where G is the graph series, 𝐺𝑡 is the graph at the time step 𝑡, 𝑑 is the number of feature dimension,
[R𝑑]𝑡 denotes the feature vector of real numbers for the graph at time t.

The second stage consists in the application of an anomaly detector method to the output of stage
one, considering optionally also some historical data. The mapping indicates whether the data is
anomalous or not.

Stage 2 =⇒ 𝑓 : {[R𝑑]𝑗 , [R𝑑]𝑡} → [0, 1], 𝑗 ∈ [𝑡− 𝑘, 𝑡− 1], (2.2)

where [R𝑑]𝑗 represents the history and k is arbitrarily chosen. This stage can be generalized by mapping
to [0,1] instead of {0,1}, representing the probability that the given data is anomalous.
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Focusing the attention on anomaly detection in temporal graphs, most of the methods are interested
in finding the best mapping from dynamic graphs to a vector of real numbers, and then applying existing
anomaly detectors.

It is possible to categorize the methods in:

∙ community detection;

∙ compression;

∙ matrix/tensor decomposition;

∙ distance measures;

∙ probabilistic models.

Community-based detection methods keep track of the evolution of communities over time. The data-
specific features are usually derived using the community structure of the graphs, what differs lies in
the aspects of the community structure analyzed and in the definition of community used. In fact, it
is possible to distinguish between soft communities, where each vertex has a probability of belonging
to each community, and disjoint communities, where each vertex belongs to one community at most.
Moreover, according to how the evolution of communities is viewed, it is possible to detect different
types of anomalies:

∙ Vertex detection: vertices that belong to the same community are expected to behave in a sim-
ilar way. So, if at consecutive time steps a vertices has a behavior that is different from the other
vertices in the community (for example, many new edges are added), that vertex is considered to
be anomalous. Referring to soft communities, vertices whose change in belongingness is differ-
ent from the average change of the vertices in the same community are said to be evolutionary
community outliers.

∙ Subgraph detection: the aim is to found entire subgraphs that behave abnormally by looking at
the behavior of communities themselves. In [7], six different types of community-based anomalies
are distinguished: shrink, grow, merge, split, born and vanish. A graph at time 𝑡 is compared to
the graphs at time 𝑡 − 1 and 𝑡 + 1, usually through community representatives in order to reduce
the computation required.

∙ Change detection: changes are detected by partitioning the streaming graphs into segments
based on the similarity of their communities. Partitioning can be achieved in many ways; when
the partitioning of the new graph is much different from the one of the current segment, a new
segment begins, so the beginning of each segment represents a detected change.

Many compression methods are based on the Minimum Description Length principle. MDL principle
is a powerful method of inductive inference: it holds that the best explanation, given a limited set of
observed data, is the one that permits the greatest compression of the data. The idea is to exploit
patterns and regularity to achieve a compact graph representation. In order to apply this principle to
graphs, the adjacency matrix of the graph is seen as a single binary string, flattened in row or column
major order. If the rows and the column can be rearranged in a way such that the entropy of the string
representation is minimized, then the compression cost is minimized. In this case anomalies are those
graphs or substructures that inhibit compression. Referring to specific types of anomalies:

∙ Edge detection: an edge is considered anomalous if the compression of a subgraph has higher
encoding cost when the edge is included than when it is omitted.

∙ Change detection: the idea is that consecutive time steps that are similar can be grouped to-
gether leading to low compression cost. When the compression cost increases, it means that the
new time step differs significantly from the previous ones, representing a change.
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In matrix/tensor decomposition techniques the set of graphs is represented as a tensor, and then
tensor factorization or dimensionality reduction is performed. In general, for modeling a dynamic graph
as a tensor, the method is to create a dimension for each graph aspect of interest. The idea is search
and exploit patterns and regularity in the data. All of the data-specific features are derived from the de-
composition of a matrix or a tensor, but the main differences among the decomposition-based methods
are whether they use a matrix or a higher order tensor, how the tensor is constructed, and the method
of decomposition.

Looking at the specific types of anomalies:

∙ Vertex detection: matrix decomposition is used to obtain activity vectors per vertex. A vertex is
considered anomalous if its activity changes significantly between consecutive time steps.

∙ Event detection: there are to principal approaches to perform event detection. The first approach
is to exploit the reconstruction error: tensor decomposition approximates the original data in a re-
duced dimensionality, and the reconstruction error is an indicator of how good the approximation
is. Elements in the tensor that have a high reconstruction error reveal anomalous vertices, sub-
graphs or event, because they do not exhibit the typical behavior of the elements surrounding
them. The second approach is based on the tracking of the evolution in time of singular values
and vectors, in order to detect significant changes.

∙ Change detection: the activity vector of a graph, 𝑢(𝑡), is the principal component, the left sin-
gular vector corresponding to the largest singular value obtained by performing Singular Value
Decomposition on the weighted adjacency matrix. A change point is when an activity vector is
substantially different from the ‘normal activity’ vector, which is derived from previous activity vec-
tors.

Using the notion of distance as a metric to measure change is a natural and widely used concept.
Two objects that have a small distance in a given metric can be considered similar. Usually, the metrics
used in graphs regard structural features: once the summary metrics are found for each graph, the
difference or similarity can be calculated. Algorithms differentiates themselves for the metrics chosen
and for the methods used to determine the anomalous values and corresponding graphs. In particular,
restricting to the different types of anomalies:

∙ Edge detection: if the evolution of some edge attribute differs from the normal evolution, then the
corresponding edge is characterized as anomalous. For example, it is possible to study how the
weights of the edges evolve or the persistence and frequency of edges.

∙ Subgraph detection: a subgraph with many anomalous edges is considered anomalous.

∙ Event detection: in order to detect events, the idea is to select a function 𝑓(𝐺𝑖, 𝐺𝑗) that measure
the distance between two graphs and construct a time series applying the function on consecutive
time steps in the graph series. Anomalous values can then be extracted in various ways using
a number of different heuristics. Extracting features from the graphs is a straightforward way to
create a summary of the graph, its signature. It is possible to distinguish between local features,
that are specific to a single vertex and its ego-net, and global features, derived from the graph
as a whole. Local features of every vertex can be aggregated into a single signature vector that
describes the graph. As an alternative to extracting multiple features, it is also possible to compute
pairwise vertex affinity scores, a measure of how much each vertex influences another vertex, or
to look at the structural differences between graphs in order to identify the magnitude of change.
Events can also be detected using the time series of robustness values for each graph: robustness
is a measure of the connectivity of the graph, so a graph with high robustness will retain the same
general structure and connectivity even when some edges or vertices are removed. An event
happens when the robustness value changes significantly.
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Probabilistic methods have a foundation in probability theory, distributions and statistics: they build
a model of what is considered normal and label as anomalous the deviations from this model. The
methods differs one another for the type of model used, how it is constructed, and the way in which
outliers are determined. Usually, the models are built using past data. Anomaly detectors in probabilistic
methods do not always perform a strict mapping from features to [0,1] (anomalous or not), but often
provide a probability that the structure is anomalous.

∙ Vertex detection: to detect anomalous vertices there is the approach of building scan statistics
time series and detecting points that are several stand deviation away from the mean, and the
approach of vertex classification. In a graph, a scan statistic can be considered as the maximum
of a graph invariant feature.

∙ Edge detection: edges are modelled using a counting process, and edges that deviate from the
model by a statistical amount are labelled anomalous.

∙ Subgraph detection: fixed subgraphs, multi-graphs, and cumulative graphs are used to con-
struct models on the expected behaviors. When there is a deviation from the model, there is an
anomalous subgraph.

∙ Event detection: deviations from the models of the graph likelihood or the distribution of the eigen-
values reveal when an event occurs.

Due to the wide range of algorithms, it can be difficult to decide which one to use. The choice depends
on the type of graph that is analyzed, the type of anomalies to find, the size of the graphs. However,
using multiple methods in parallel or in conjunction may yield to better results compared to using a
single method.

2.2.3. Challenges

There are many challenges associated with anomaly detection and attribution of the anomalies, we can
divide them in three sub-groups as in [3]: data-specific challenges, problem-specific challenges and
graph-specific challenges.

Data-specific challenges are the same encountered when working with big data, so volume, velocity
and variety of datasets. The same challenges generalize to graph data as well. We can list:

∙ Scale and dynamics: thanks to technology developments, now it is much easier to collect and
analyze large datasets. Not only is the size of data in tera-bytes to peta-bytes, but also the rate at
which it arrives is huge.

∙ Complexity: in addition to data size and dynamicity, the datasets are rich and complex in content.
As a result, graph representations are very complex due to the incorporation of the additional
information available, and nodes and edges can have a long list of attributes associated.

Among the problem-specific challenges, we can find:

∙ Lack and noise of labels: data often come without class labels, that is, there is not a ground
truth about whether data instances are anomalous or not. Manual labelling the data is usually not
feasible due to the size. Moreover, even when data have labels, they are subject to noises and
errors. For these reasons, supervised machine learning algorithms are not very appropriate for
the task of anomaly detection.

∙ Class imbalance and asymmetric error: since anomalies are rare events by definition, data
have an unbalanced nature and only a very small fraction of data is expected to be abnormal.
Besides, the cost of mislabelling an instance depends on the application, and it could be hard to
estimate beforehand.
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∙ Novel anomalies: especially in the fraud detection domain, when fraudsters understand how the
detect algorithms work, they try to change their techniques in order to bypass them. For this
reason, algorithms should be adaptive to changing over time.

∙ Explaining the anomalies: in the post-detection phase, there is the additional challenge of ex-
plaining anomalies. This involves finding out the root cause of the anomaly and understanding the
’how’ and the ’why’. Most of the existing detection techniques do not perform this step, emitting
results that are difficult to interpret.

All of the above challenges associated with the anomaly detection problem generalize to graph data,
but graph-based anomaly detection has additional challenges as well:

∙ Inter-dependent objects: due to the relation nature of data, it is challenging to quantify the
anomalousness of graph objects. In traditional outlier detection, the object are data points treated
as independent and identical distributed, while the objects in graph data have correlations. For
this reason, when searching for anomalies, these associations need to be taken into account.

∙ Variety of definitions: as we have seen, the definitions of anomalies are much more diverse
than in traditional outlier detection, and this surely represents an additional challenge.

∙ Size of search space: when performing anomaly detection on graphs, the main challenge is that
the search space is huge. Usually it is not possible to proceed with the enumeration of possible
substructures, which makes the anomaly detection problem even harder. Moreover, the search
space is enlarged when the graphs are attributed. As a result, graph-based anomaly detection
algorithms need to be designed for effectiveness, efficiency, and scalability.

2.3. Reinforcement Learning

Reinforcement Learning is one of the main components of the report. This section is dedicated to
the introduction and description of Reinforcement Learning techniques and the elements involved, as
illustrated in [2].

When we think about the nature of learning, the first thing that comes to mind is that we learn by
interacting with our environment. This kind of connection gives information about cause and effects and
consequences and actions. Reinforcement learning can be considered a computational approach to
learning from interaction, focused on goal-directed learning interaction. It consists in learning what to
do to maximize a numerical reward signal. The learner is not told which actions to take; instead, it must
discover which actions yield the most reward by trying them. Clearly, actions may affect the immediate
reward and the next situations and thus the subsequent rewards. Trial-and-error and delayed rewards
are two distinguishing features of reinforcement learning.

Reinforcement learning is different from supervised learning because the latter is learning from a
training set of labeled examples provided by an external supervisor. The object is to generalize the
responses so that the system acts correctly in situations not present in the training set. This kind of
learning is not appropriate for learning from interaction because, in interactive problems, it is usually
impractical to obtain examples of desired behaviors that are both correct and representative of the
situations in which the agent has to act. Reinforcement learning is also different from unsupervised
learning, typically about finding structures hidden in collections of unlabelled data. Uncovering structure
in an agent experience can be useful, but it does not address the reinforcement learning problem. We,
therefore, consider reinforcement learning to be a third machine learning paradigm.

One of the challenges that arise in reinforcement learning and not in other kinds of learning is the
trade-off between exploration and exploitation: the agent has to exploit what it has already experienced
in order to obtain a reward, but it also has to explore in order to make better action selections in the
future. Another key feature of reinforcement learning is that it explicitly considers the whole problem of

Territori Aperti
9



a goal-directed agent interacting with an uncertain environment. This is in contrast to many approaches
that consider sub-problems without addressing how they might fit into a larger problem.

Beyond the agent and the environment, one can identify four main elements of a reinforcement learn-
ing system:

∙ Policy: it defines the learning agent’s way of behaving at a given time. It is a mapping from per-
ceived states of the environment to actions to be taken when in those states. In some cases, the
policy may be a simple function or lookup table, whether in others it may involve extensive com-
putation, such as a search process. It is important to distinguish between two types of policies:
stochastic and deterministic. In a deterministic policy the mapping is rigid, that is given a state
there is just one action to be performed according to the policy. We denote with 𝜋(𝑠) the action
taken in state 𝑠 under the deterministic policy 𝜋. In a stochastic setting, given a certain state, the
policy does not return a single action but a set of actions that could be performed from that state
each with a certain probability. We denote with 𝜋(𝑎|𝑠) the probability of taking action 𝑎 in state 𝑠
under the stochastic policy 𝜋.

∙ Reward signal: it defines the goal of a reinforcement learning problem on each step. The envi-
ronment sends to the reinforcement learning agent a single number called the reward: the agent’s
objective is to maximize the total reward it receives over the long run. The reward signal thus
defines what are the good and bad events for the agent.

∙ Value function: it specifies what is good in the long run. Roughly speaking, the value of a
state is the total amount of reward an agent can expect to accumulate over the future, starting
from that state. Whereas rewards determine the immediate desirability of environmental states,
values indicate the long-term desirability of states after taking into account the states that are
likely to follow and the rewards available in those states. We seek actions that bring about states
of highest value, not highest reward, because these actions obtain the greatest amount of reward
in the long run.

∙ Model of the environment: it is something that mimics the behavior of the environment, or more
generally, that allows inferences to be made about how the environment will behave. Models are
made for planning, by which we mean any way of deciding on a course of action by considering
possible future situations before they are actually experienced. Methods for solving reinforcement
learning problems that use models and planning are called model-based methods, as opposed to
model-free methods, that are explicitly trial-and-error learners.

2.3.1. Markov Decision Processes

We formalize reinforcement learning using ideas from dynamical systems theory, specifically as the
optimal control of incompletely known Markov decision processes. The basic idea is to capture the most
important aspects of the real problem facing a learning agent interacting over time with its environment
to achieve a goal. A learning agent must sense the state of its environment to some extent and take
actions that affect the state. The agent must also have a goal or goals related to the states of the
environment.

Markov decision processes are a classical formalization of sequential decision making, where actions
influence immediate rewards and subsequent situations and, through those, future rewards. Thus,
MDPs involves the need to trade-off immediate and delayed rewards.

The learner is called an agent; the thing it interacts with, comprising everything outside the agent,
is the environment. These interact continually, the agent selecting actions and the environment re-
sponding to these actions and presenting new situations to the agent. The environment also gives rise
to rewards. More specifically, the agent and the environment interact at each step of a sequence of
discrete-time steps. At each time step t, the agent receives some representation of the environment’s
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state, 𝑆𝑡 ∈ 𝑆 with 𝑆 space of states, and on that basis selects an action, 𝐴𝑡 ∈ 𝐴 with 𝐴 space of
actions. One time step later, in part as a consequence of the action, the agent receives a numerical
reward, 𝑅𝑡�	 ∈ 𝑅 ⊂ R with 𝑅 space of rewards, and finds itself in a new state 𝑆𝑡�	. The MDP and
agent together give rise to a sequence or trajectory that begins like this:

𝑆�, 𝐴�, 𝑅	, 𝑆	, 𝐴	, 𝑅
, 𝑆
, 𝐴
, 𝑅�, ...

In a finite MDP, the set of states, actions, and rewards all have a finite number of elements. In this
case, the random variables 𝑆𝑡 and 𝑅𝑡 have well-defined discrete probability distributions depending only
on the precedent state and action. This means that there is a probability of those values occurring at
time t given particular values of the preceding state and action:

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−	 = 𝑠,𝐴𝑡−	 = 𝑎} (2.3)

for all 𝑠, 𝑠′ ∈ 𝑆, 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴(𝑠).
The function 𝑝 : 𝑆×𝑅×𝑆×𝐴 → [0, 1] defines the dynamics of the MDP, it is an ordinary deterministic

function of four arguments. It specifies a probability distribution for each choice of 𝑠 and 𝑎, such that:∑︁
𝑠′∈𝑆

∑︁
𝑟∈𝑅

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 1 (2.4)

for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠).
In a Markov decision process, the probabilities given by 𝑝 completely characterize the environment’s

dynamics and enable to compute anything else one might want to know about the environment. The
state must include information about all aspects of the past agent-environment interaction that make a
difference for the future. If it does, then the state is said to have the Markov property.

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a special signal,
called the reward, passing from the environment to the agent. At each time step, a reward is a simple
number 𝑅𝑡 ∈ R. Informally, the agent’s goal is to maximize the total amount of rewards it receives. Al-
though formulating goals in terms of reward signals may appear limiting, it has proved to be very flexible
in practice. The reward we set up truly must indicate what we want to be accomplished: communicating
to the agent what we want to achieve, not how we want it achieved.

In general, we seek to maximize the expected return, where the return, denoted as 𝐺𝑡, is defined
as some specific function of the reward sequence. In the simplest case, the return is the sum of the
rewards:

𝐺𝑡 = 𝑅𝑡�	 +𝑅𝑡�
 +𝑅𝑡�� + ...+𝑅𝑇 (2.5)

where T is a final step.
This approach makes sense in applications where there is a natural notion of the final time step

when the agent-environment interaction breaks naturally into sub-sequences, which we call episodes.
Each episode ends in a special state called terminal state, followed by a reset to a standard starting
or a sample from a standard distribution of starting states. The next episode begins independently of
how the previous one ended. Thus, the episodes can all end in the same terminal state, with different
rewards for different outcomes. Tasks with episodes of this kind are called episodic tasks.

On the other hand, in many cases, the agent-environment interaction does not break naturally into
identifiable episodes but goes on continually without limit: we call these continuing tasks. The return for-
mulation is problematic for continuing tasks because the final time step would be 𝑇 = ∞, and the return
could easily be infinite. We need to modify the definition: the additional concept is that of discounts. Ac-
cording to this approach, the agent tries to select actions to maximize the expected discounted return:

𝐺𝑡 = 𝑅𝑡�	 + 𝛾𝑅𝑡�
 + 𝛾
𝑅𝑡�� + ...+𝑅𝑇 =

∞∑︁
𝑘��

𝛾𝑘𝑅𝑡�𝑘�	 (2.6)
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where 𝛾 ∈ [0, 1] is a parameter called discount factor or rate. It determines the present value of future
rewards. If 𝛾 < 1, the infinite sum has a finite value as long as the reward sequence {𝑅𝑘} is bounded.
Suppose 𝛾 = 0; the agent is concerned only with maximizing immediate rewards. As 𝛾 approaches
1, the return objective takes future rewards into account more strongly: the agent becomes more far-
sighted.

Almost all reinforcement learning algorithms include estimating value functions. Value functions are
defined as particular ways of acting, called policies. Formally, a policy is a mapping from states to
probabilities of selecting each possible action. If the agent is following a policy 𝜋 at time 𝑡, then 𝜋(𝑎|𝑠)
is the probability that 𝐴𝑡 = 𝑎 if 𝑆𝑡 = 𝑠.

The value function of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋(𝑠), is the expected return when starting
in 𝑠 and following 𝜋 thereafter. For MDPs, we can define 𝑣𝜋 formally by:

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

= E𝜋[
∞∑︁
𝑘��

𝛾𝑘𝑅𝑡�𝑘�	|𝑆𝑡 = 𝑠]
(2.7)

for all 𝑠 ∈ 𝑆. We call the function 𝑣𝜋 the state-value function for policy 𝜋.
Similarly, we define the value of taking action 𝑎 in state 𝑠 under policy 𝜋, denoted 𝑞(𝑠, 𝑎), as the

expected return starting from 𝑠, taking the action 𝑎, and thereafter following policy 𝜋:

𝑞(𝑠, 𝑎) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= E𝜋[
∞∑︁
𝑘��

𝛾𝑘𝑅𝑡�𝑘�	|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]
(2.8)

We call 𝑞𝜋(𝑠, 𝑎) the action-value function for policy 𝜋. The value functions 𝑣𝜋 and 𝑞𝜋 can be esti-
mated from experience. A fundamental property is that for any policy 𝜋 and any state 𝑠, the following
consistency condition holds between the value of 𝑠 and the value of its possible successor states:

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

= E𝜋[𝑅𝑡�	 + 𝛾𝐺𝑡�	|𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′

∑︁
𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾E𝜋[𝐺𝑡�	|𝑆𝑡�	 = 𝑠′]]

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠
′)]

(2.9)

The final expression can be read easily as an expected value. It is a sum overall values of the three
variables 𝑎, 𝑠′, and 𝑟. For each triple, we compute its probability 𝜋(𝑎|𝑠)𝑝(𝑠′, 𝑟|𝑠, 𝑎), weight the quantity
in brackets by that probability, then sum over all the possibilities to get an expected value. The Bellman
equation for 𝑣𝜋 expresses the relationship between the value of a state and the values of its successor
states.

For finite MDPs, we can precisely define an optimal policy in the following way. Value functions define
a partial ordering overt policies: a policy 𝜋 is defined to better or equal to a policy 𝜋′ if its expected
return is greater than or equal to that of 𝜋′ for all states:

𝜋 ≥ 𝜋′ ⇐⇒ 𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠) ∀𝑠 ∈ 𝑆 (2.10)

There is always at least one policy that is better than or equal to all other policies: this is an optimal
policy. Although there may be more than one, we denote all the optimal policies by 𝜋*. They share the
same state-value function, called the optimal state-value function 𝑣*, and defined as 𝑣*(𝑠) = 𝑚𝑎𝑥𝜋𝑣𝜋(𝑠)
for all 𝑠 ∈ 𝑆. Optimal policies also share the same optimal action-value function, 𝑞*, defined 𝑞*(𝑠, 𝑎) =
𝑚𝑎𝑥𝜋𝑞𝜋(𝑠, 𝑎).
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For the state-action pair (𝑠, 𝑎), this function gives the expected return for taking action 𝑎 in state 𝑠 and
thereafter following an optimal policy. Thus, we can write 𝑞* in terms of 𝑣* as follows:

𝑞*(𝑠, 𝑎) = E[𝑅𝑡�	 + 𝛾𝑣*(𝑠𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]. (2.11)

Since 𝑣* is the value function for a policy, it must satisfy the Bellman equation, in this case the Bellman
optimality equation. Intuitively, it expresses the fact that the value of a state under an optimal policy must
equal the expected return for the best action from that state:

𝑣*(𝑠) = 𝑚𝑎𝑥𝑎∈𝐴𝑞𝜋*(𝑠, 𝑎)

= 𝑚𝑎𝑥𝑎E𝜋* [𝐺𝑡|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= 𝑚𝑎𝑥𝑎E𝜋* [𝑅𝑡�	 + 𝛾𝐺𝑡�	|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= 𝑚𝑎𝑥𝑎E[𝑅𝑡�	 + 𝛾𝑣�(𝑆𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= 𝑚𝑎𝑥𝑎
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣*(𝑠
′)].

(2.12)

The Bellman optimality equation for 𝑞* is:

𝑞*(𝑠, 𝑎) = E[𝑅𝑡�	 + 𝛾𝑚𝑎𝑥𝑎′𝑞*(𝑠𝑡�	,𝑎)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑞*(𝑠
′, 𝑎′)] (2.13)

The Bellman optimality equation is actually a system of equations, one for each state. If the dynamics
𝑝 are known, then in principle one can solve this system for 𝑣* or 𝑞*.

Once one has 𝑣*, it is relatively easy to determine an optimal policy: for each state 𝑠, there will be
one or more actions at which the maximum is obtained in the Bellman optimality equation. Any policy
that assigns nonzero probability only to these actions is an optimal policy; any policy that is greedy with
respect to the optimal evaluation function 𝑣* is an optimal policy.

Having 𝑞* makes choosing optimal actions even easier. With 𝑞*, the agent does not ever have to do
a one-step-ahead search: for any state 𝑠, it can simply find any action that maximizes 𝑞*(𝑠, 𝑎).

Explicitly solving the Bellman optimality equation is rarely directly useful. This solution relies on at
least three assumptions that are rarely true in practice:

1) we accurately know the dynamics of the environment:

2) we have enough computational resources to complete the computation of the solution;

3) the Markov property.

It is possible to categorize reinforcement learning methods in tabular solution methods and approxi-
mate solution methods, but one typically has to settle for approximate solutions.

Since having a model of the environment is not mandatory, it is possible to make another distinction
in reinforcement learning: model-based methods and model-free methods. By model we intend a
representation of how the world changes in response to the agent’s actions.

Model-free algorithms (as opposed to model-based ones) are methods which do not use the transition
probability distribution and the reward function associated with the Markov decision process, which
represents the problem to be solved. A model-free RL algorithm can be thought of as an explicit trial-
and-error algorithm: the agent only experiences what happens for the actions it tries. In a model-free
setting it can happen that the value function and/or the policy are known.

Model-based settings are the ones in which the model is explicit, while the policy and/or value function
may or may not be known. Clearly, model-based methods rely on planning as their primary component,
while model-free methods primarily rely on learning.

Model-free methods are fundamental and widely used, since it is not always possible or it is too
difficult to construct a sufficiently accurate environmental model.
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2.3.2. Reinforcement Learning methods

In reinforcement learning it is possible to distinguish between tabular solution methods and approximate
solution methods. We will describe them briefly, explaining when it is most appropriate to use them.

Tabular solution methods

Tabular solution methods are the ones in which the state and action spaces are small enough for the
approximate value functions to be represented as arrays or tables. In this case, the methods can often
find exactly the optimal value function and the optimal policy.

There are three fundamental classes of methods for solving finite Markov decision problems: dynamic
programming, Monte Carlo methods, and temporal-difference learning. It is also possible to combine
these methods in order to obtain the best features of each of them.

∙ Dynamic programming: the term dynamic programming refers to a collection of algorithms that
can be used to compute optimal policies given a perfect model of the environment as a Markov
decision process. The key idea of DP is the use of value functions to organize and structure
the search for good policies. Classical DP methods operate in sweeps through the state set,
performing an expected update operation on each state. Each such operation updates the value of
one state based on the values of all possible successor states and their probabilities of occurring;
expected updates are closely related to Bellman equations. When the updates no longer result in
any changes in value, convergence has occurred to values that satisfy the corresponding Bellman
equation. Just as there are four primary value functions (𝑣𝜋, 𝑣*, 𝑞𝜋, 𝑞*) there are four corresponding
Bellman equations and four corresponding expected updates.

∙ Monte Carlo methods: it is not assumed the complete knowledge of the environment, but expe-
rience, that is sample sequences of states, actions, and rewards from actual or simulated interac-
tion with the environment. Learning from actual experience is striking because it does not require
prior knowledge of the environment’s dynamics, but also learning from simulated experience is
quite powerful. Although a model is required, the model only generate sample transitions, not the
complete probability distributions of all possible transitions that is required for DP.

Monte Carlo methods are ways of solving the reinforcement learning problem based on averaging
sample returns. To ensure that well-defined returns are available, these methods are usually
applied on episodic tasks. Only on the completion of an episode values are estimated and policies
changed. Monte Carlo methods can thus be incremental in an episode-by-episode sense, but not
in a step-by-step sense.

This formulation gives at least three kinds of advantages over DP methods. First, they can be
used to learn optimal behavior directly from interaction with the environment, with no model of the
environment’s dynamics. Second, they can be used with simulation or sample models. Third, it
is easy and efficient to focus Monte Carlo methods on a small subset of the states; a region of
special interest can be accurately evaluated without the expense of evaluating the rest of the state
set.

∙ Temporal-difference learning: it is a combination of Monte Carlo ideas and dynamic program-
ming ideas. Like Monte Carlo methods, TD methods can learn directly from raw experience with-
out a model of the environment’s dynamics. Like DP, TD methods update estimates based in part
on other learned estimates, without waiting for a final outcome. This is the idea that approximate
policy and value functions should interact in such a way that they both move toward their optimal
values. It can be identified as a central and novel concept to reinforcement learning.

These methods are the most widely used nowadays in reinforcement learning. This is due to
their simplicity: they can be applied online, with a minimal amount of computation, to experience
generated from interaction with an environment; they can be expressed completely by single
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equations that can be implemented with small computer programs. Moreover, TD methods can
be also considered outside the context of reinforcement learning: they are general methods for
learning to make long-term predictions about dynamical systems.

Approximate solution methods

Approximate solution methods are extension of tabular methods to problems with arbitrarily large state
spaces. In many of the tasks to which apply reinforcement learning, the state space is combinatorial
and enormous. In such cases, it is not possible to find an optimal policy or the optimal value function,
even in the limit of infinite time and data; the goal instead is to find a good approximate solution using
limited computational resources.

The problem with large state spaces is not just the memory needed for large tables, but the time and
data needed to fill them accurately. In many of the target tasks, almost every state encountered will
never have been seen before. To make sensible decisions in such states, it is necessary to generalize
from previous encounters with different states that are in some sense similar to the current one: the key
concept is generalization.

It is needed to combine reinforcement learning methods with existing generalization methods. The
kind of generalization required is often called function approximation, because it takes examples from
a desired function and attempts to generalize from them to construct an approximation of the entire
function; it is an instance of supervised learning.

There are several cases that can be considered: the one of on-policy training, in which the policy
is given and only its value function is approximated; the control case, in which an approximation to
the optimal policy is found; the off-policy learning with function approximation and the policy gradient
methods, which approximate the optimal policy directly without an approximate value function.

∙ On-policy prediction with approximation: it is an example in function approximation in rein-
forcement learning in estimating the state-value function from on-policy data. This means approx-
imating 𝑣𝜋 from experience generated using a known policy 𝜋. The novelty is that the approximate
value function is represented not as a table but as a parametrized function form with weight vector
𝑤 ∈ R𝑑. Typically, the number of weights is much less than the number of states, and changing
one weight changes the estimated value of many states. Consequently, when a single state is
updated, the change generalizes from that state to affect the values of many other states. Such
generalization makes the learning potentially more powerful, but also potentially more difficult to
manage and understand.

∙ On-policy control with approximation: the aim is to solve the control problem, that is the prob-
lem of finding an optimal policy, with the parametric approximation of the action-value function
𝑞(𝑠, 𝑎).

∙ Off-policy methods with approximation: in off-policy learning we seek to learn a value function
for a target policy 𝜋, given data due to a different behavior policy 𝑏. In the prediction case, both
policies are static and given, and we seek to learn either state values 𝑣 ≈ 𝑣𝜋 or action values
𝑞 ≈ 𝑞𝜋. In the control case, action values are learned, and both policies typically change during
learning - 𝜋 being the greedy policy with respect to 𝑞, and 𝑏 being something more exploratory.

One reason to seek off-policy algorithms is to give flexibility in dealing with the trade-off between
exploration and exploitation. Another is to free behavior from learning, and avoid the tyranny of
the target policy. The whole area of off-policy learning is relatively new and unsettled.

∙ Policy gradient methods: these methods learn a parameterized policy that can select actions
without consulting a value function. A value function may still be used to learn the policy param-
eter, but it is not required for action selection. These methods learn the policy parameter based
on the gradient of some scalar performance measure with respect to the policy parameter. They
seek to maximize the performance, so their updates approximate gradient ascent.
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All the methods that follow this general schema are called policy gradient methods, while methods
that learn approximations to both policy and value functions are often called actor-critic methods,
where actor is a reference to the learned policy, and critic refers to the learned value function.

Methods that learn and store a policy parameter have many advantages: they can learn specific
probabilities for taking the actions; they can learn appropriate levels of exploration and approach
deterministic policies asymptotically; they can naturally handle continuous action spaces.

2.4. Dynamic Programming in Reinforcement Learning

The following section is a focus on dynamic programming techniques in reinforcement learning: being
a first reinforcement learning approach to anomaly detection in temporal graphs, we have decided to
focus on DP in order to understand whether this approach gives meaningful results or not.

As introduced before, dynamic programming algorithms can be used to compute optimal policies
under the condition of a perfect model of the environment as a Markov Decision process. Classical DP
algorithms are of limited utility in reinforcement learning both because of their assumption of a perfect
model and of their great computational expense. They still are important theoretically, providing a basis
for more evolved methods.

The starting assumption is that the environment is a finite MDP, that is we assume that its states,
action, and reward sets, 𝑆, 𝐴, and 𝑅, are finite, and that its dynamics are given by a set of probabilities
𝑝(𝑠′, 𝑟|𝑠, 𝑎) for all 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴, and 𝑟 ∈ 𝑅.

The central idea is that of using value functions to set up the search for good policies. As discussed
before, it is possible to easily find the optimal policies once the optimal value functions, which satisfy
the Bellman optimality equation, have been found:

𝑣*(𝑠) = max
𝑎

E[𝑅𝑡�	 + 𝛾𝑣*(𝑆𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣*(𝑠
′)], 𝑜𝑟

(2.14)

𝑞*(𝑠, 𝑎) = E[𝑅𝑡�	 + 𝛾max
𝑎′

𝑞*(𝑠𝑡�	,𝑎)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾max
𝑎′

𝑞*(𝑠
′, 𝑎′)]

(2.15)

for all 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴.
DP algorithms are obtained by turning Bellman equations into assignments, that is into update rules

for improving the approximation of the value functions.

2.4.1. Policy Evaluation or Prediction

By policy evaluation or prediction problem is intended the issue of how to compute the state-value
function 𝑣𝜋 for an arbitrary policy 𝜋. We already know that for all 𝑠 ∈ 𝑆:

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

= E𝜋[𝑅𝑡�	 + 𝛾𝐺𝑡�	|𝑆𝑡 = 𝑠]

= E𝜋[𝑅𝑡�	 + 𝛾𝑣𝜋(𝑆𝑡�	)|𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠
′)]

(2.16)

The existence and uniqueness of 𝑣𝜋 are guaranteed if either 𝛾 < 1 or if termination is guaranteed
from all states under the policy 𝜋.
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If the dynamics of the environment are completely known, then we have a system of |𝑆| linear equa-
tions, where the |𝑆| unknowns are the 𝑣𝜋(𝑠) for 𝑠 ∈ 𝑆. It is possible to directly solve this system, but
since it is computationally expensive it is better to use iterative solution methods.

Consider a sequence of approximate value functions 𝑣�, 𝑣	, 𝑣
, ..., each mapping 𝑆 to R. The initial
approximation 𝑣� is chosen in an arbitrary way, except that the terminal state, if present, must be given
value 0. Each successive approximation is obtained using the Bellman equation of 𝑣𝜋 as update rule:

𝑣𝑘�	(𝑠) = E𝜋[𝑅𝑡�	 + 𝛾𝑣𝑘(𝑆𝑡�	)|𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋(𝑎|𝑠)
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠
′)] (2.17)

for all 𝑠 ∈ 𝑆.
Clearly, when the updates no longer result in any changes in value it means that convergence has

happened to values that satisfy the Bellman equation. In fact, 𝑣𝑘 = 𝑣𝜋 is a fixed point for this update
rule. The sequence {𝑣𝑘} can be shown to converge to 𝑣𝜋 as 𝑘 → ∞ under the same conditions that
guarantee the existence of 𝑣𝜋. This algorithm is called iterative policy evaluation.

The operation performed above is called expected update: to obtain 𝑣𝑘�	 from 𝑣𝑘, for each state it
replaces the old value of 𝑠 with a new value obtained from the old values of the successor states of 𝑠,
and the expected immediate rewards, along all the one-step transitions possible under the policy being
evaluated.

There are several different kinds of expected updates, depending on whether the state or a state-
action pair is updated, and also according to the way the estimated values of the successor states
are combined. These updates are called expected because they are based on an expectation over all
possible next states rather than on a sample next state.

2.4.2. Policy Improvement

Once we have determined the value function 𝑣𝜋 for an arbitrary policy 𝜋, the next step is to understand
whether for some state 𝑠 it is better to change the policy to deterministically choose an action 𝑎 ̸= 𝜋(𝑠).
One way to answer this question is to consider the action 𝑎 in the state 𝑠 and then following the existing
policy 𝜋, that is:

𝑞𝜋(𝑠, 𝑎) = E[𝑅𝑡�	 + 𝛾𝑣𝜋(𝑆𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=
∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠
′)] (2.18)

We need to evaluate if this quantity is greater or less than 𝑣𝜋(𝑠): if it is greater, it means that it is better
to select 𝑎 when in 𝑠 and then follow the policy 𝜋 rather than follow 𝜋 all the time. As a consequence,
the modified policy in that selects 𝑎 every time 𝑠 is encountered is better than 𝜋.

This is a special case of a general result called the policy improvement theorem:
[Policy improvement theorem] Let 𝜋 and 𝜋′ be any pair of deterministic policies such that for all 𝑠 ∈ 𝑆

it holds that 𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋(𝑠).
Then the policy 𝜋′ must be as good as, or better than, 𝜋, that is it must obtain greater or equal

expected return from all states 𝑠 ∈ 𝑆: 𝑣′𝜋(𝑠) ≥ 𝑣𝜋(𝑠).
Moreover, if there is a strict inequality 𝑞𝜋(𝑠, 𝜋

′(𝑠)) > 𝑣𝜋(𝑠) at any state, then there must be a strict
inequality also in 𝑣′𝜋(𝑠) > 𝑣𝜋(𝑠) at that state. Thus, if 𝑞𝜋(𝑠, 𝑎) > 𝑣𝜋(𝑠), then the changed policy is indeed
better than 𝜋.

We have seen how, given a policy and its value function, we can evaluate the consequences of a
change in the policy at a single state to a particular action. The natural extension is to consider the
changes at all states and to all possible actions, selecting at each state the actions that seems best
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according to 𝑞𝜋(𝑠, 𝑎). The new considered policy 𝜋′ is given by:

𝜋′(𝑠) =𝑎 𝑞𝜋(𝑠, 𝑎)

=𝑎 E[𝑅𝑡�	 + 𝛾𝑣𝜋(𝑆𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

=𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝜋(𝑠
′)].

(2.19)

The greedy policy 𝜋′ takes the action that looks best in the short term, that is one step ahead,
according to 𝑣𝜋. By definition, 𝜋′ satisfies the conditions of the policy improvement theorem, so it is as
good as, or better than, the original policy. This process is called policy improvement.

Suppose that the new greedy policy 𝜋′ is as good as, but not better than, the old policy 𝜋. Then
𝑣𝜋 = 𝑣′𝜋, and from (2.19) it is possible to derive that for all 𝑠 ∈ 𝑆:

𝑣′𝜋(𝑠) = max
𝑎

E[𝑅𝑡�	 + 𝛾𝑣′𝜋(𝑆𝑡�	)|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣′𝜋(𝑠
′)], 𝑜𝑟

(2.20)

This is exactly the Bellman optimality equation (2.14), therefore 𝑣′𝜋 must be 𝑣*, and both 𝜋 and 𝜋′

must be optimal policies.
The policies considered up to now are deterministic, but these ideas can be extended to stochastic

policies, that specify probabilities 𝜋(𝑎|𝑠) for taking each action 𝑎 in each state 𝑠.

2.4.3. Policy Iteration

Once a policy 𝜋 has been improved using 𝑣𝜋, and a better policy 𝜋′ has been obtained, it is possible to
compute 𝑣′𝜋 and improve it again to obtain an even better policy 𝜋′′. In this way we get a sequence of
monotonically improving policies and value functions:

𝜋�
𝐸−→ 𝑣𝜋�

𝐼−→ 𝜋	
𝐸−→ 𝑣𝜋	

𝐼−→ 𝜋

𝐸−→ . . .

𝐼−→ 𝜋*
𝐸−→ 𝑣*,

where 𝐸−→ denotes a policy evaluation and 𝐼−→ denotes a policy improvement.
Since a finite MDP has only a finite number of policies, the process must converge in a finite number

of iterations to an optimal policy and an optimal value function. This procedure of finding an optimal
policy is called policy iteration.

One drawback of policy iteration is that each iteration involves policy evaluation, which may itself be
an iterative computation: it is possible to find a way to avoid this issue.

2.4.4. Value Iteration

In order to improve policy iteration, one must consider that the policy evaluation step of policy iteration
can be truncated in several ways without losing convergence. One particular case is when policy eval-
uation is stopped after just one update of each state (that is one sweep): the value iteration algorithm.

This algorithm can be written as a simple update operation that combines the policy improvement
and truncated policy evaluation step:

𝑣𝑘�	 = max
𝑎

E[𝑅𝑡�	 + 𝛾𝑣𝑘(𝑆𝑡�	)]|𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]

= max
𝑎

∑︁
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣𝑘(𝑠
′)]

(2.21)

for all 𝑠 ∈ 𝑆. For an arbitrary 𝑣�, it is possible to prove that the sequence {𝑣𝑘} converges to 𝑣* under
the same conditions that guarantee the existence of 𝑣*.
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In order to understand the key idea of value iteration, we can consider the Bellman optimality equation
(2.14). Value iteration, in fact, is obtained by turning the Bellman optimality equation into an update rule.

Formally, value iteration requires an infinite number of iterations to converge: in practice, we stop
when the value function changes only by a small amount in a sweep. A faster convergence is often
achieved by interposing multiple policy evaluation sweeps between each policy improvement sweep.
However, in general, the whole class of truncated policy iteration algorithms can be considered as
sequences of sweeps, some performing policy evaluation updates and others performing value iteration
updates.

2.4.5. Asynchronous Dynamic Programming and Generalized Policy Iteration

One drawback of the methods discussed before, is that they involve operations that need to be per-
formed over the entire state set of the MDP: if the state set is very large, it can become too much
expensive. Asynchronous DP algorithms are in-place iterative algorithms that are not organized in
terms of systematic sweeps of the state set: they update the values of the state in any order, using the
values of others states that are available. In order to converge correctly, it is still necessary to update
the values of all the states: what changes is the great flexibility in selecting states to update.

This technique does not necessarily result in less computation, it simply means that the algorithm
does not get stuck into a long sweep before it can improve the policy. It is possible to organize the order
of the updates in order to take advantages from this strategy, for example trying to order the updates
to let value information propagate from state to state in an efficient way. It is also possible to combine
asynchronous algorithms with real time interaction: the agent’s experience can be used to determine
the states to update, and, at the same time, the latest value and policy information from the algorithm
can guide the agent’s decision making.

Policy iteration consists of two simultaneous interacting processes, policy evaluation and policy im-
provement. In policy iteration, these two processes alternate, one beginning when the other finishes,
but this is not strictly necessary as we have seen in value iteration and asynchronous algorithms. The
term generalized policy iteration (GPI) refers to the idea of letting policy evaluation and policy improve-
ment processes interact, independently from the details of the two processes. When both the processes
stabilize, in the sense that they do not change, then the value function and policy must be optimal. The
value function stabilizes only when it is consistent with the current policy, and the policy stabilizes only
when it is greedy with respect to the current value function.

The two processes in GPI are both competing and cooperating. They compete because making the
policy greedy with respect to value function typically makes the value function incorrect for the changed
policy, and making the value function consistent with the policy typically causes the policy no longer to
be greedy. However, in the long turn these processes interact to find a single common solution: the
optimal value function and an optimal policy.

In conclusion, considering the efficiency of dynamic programming, we can say that DP may not be
practical for solving very large problems, but compared with other methods for solving MDPs it is quite
efficient. The worst case time DP methods take to find an optimal policy is polynomial in the number
of states and actions. In this sense, DP is exponentially faster than any direct search in policy space
could be, because direct search needs to examine each possible policy to guarantee the finding of the
optimal one.

Linear programming methods can also be used to solve MDPs, and it happens that their performance
is better than DP, but the problem is that linear programming becomes impractical at a much smaller
number of states than do DP methods. On the other hand, sometimes also DP methods are of limited
applicability due to the curse of dimensionality, that is the fact that the number of states often grows
exponentially with the number of state variables. Anyways, DP methods remain the best option for
handling large state spaces compared to direct search and linear programming: today’s computers
are able to solve MDPs with millions of states. Clearly, in cases of large state spaces, asynchronous
methods and GPI perform better than synchronous methods.
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2.5. Graph generators

Since the report is focused on the application of reinforcement learning techniques on small graphs
without anomalies at first, and since it is very difficult in the real world to find such graphs, we introduce
graph generators.

Graphs are ubiquitous in the real world, representing objects and their relationships such as social
networks, citation networks, biology networks, traffic networks, etc. Graphs are also known to have
complicated structures that contain rich underlying values. Much effort has been made in this area,
resulting in a rich literature of related papers and methods to deal with various kinds of graph problems,
which can be categorized into two types: 1) predicting and analyzing patterns on given graphs; 2)
learning the distributions of given graphs and generating more novel graphs. We are interested in this
second problem.

As explained in [8], graph generation entails modeling and generating real-world graphs, and it has
applications in several domains, such as understanding interaction dynamics in social networks, link
prediction, and anomaly detection. Owing to its many applications, the development of generative
models for graphs has a rich history, resulting in famous models such as random graphs, small-world
models, stochastic block models, and Bayesian network models, which generate graphs based on
apriori structural assumptions.

2.5.1. Erdős–Rényi Model

The Erdős–Rényi random graph model, that is the mother of all graph models as explained in [9], was
introduced in 1959 by the Hungarian mathematicians Paul Erdős and Alfréd Rényi.

The method starts with N vertices, and randomly links two nodes with a probability of 𝑝. Such graphs
with N nodes and edge probability 𝑝 form a set of graphs 𝐺𝑁,𝑝.

A graph in 𝐺𝑁,𝑝 has on average 𝑝
(︀
𝑛



)︀
edges. The distribution of the degree of any particular vertex is

binomial:

𝑃 (𝑑𝑒𝑔(𝑣) = 𝑘) =

(︂
𝑁 − 1

𝑘

)︂
𝑝𝑘(1− 𝑝)𝑁−	−𝑘

Since

𝑃 (𝑑𝑒𝑔(𝑣) = 𝑘) → (𝑁𝑝)𝑘𝑒−𝑁𝑝

𝑘!
,

this distribution is Poisson for large N and N𝑝 constant.
In a 1960 paper, Erdős and Rényi described the behavior of 𝐺𝑁,𝑝 very precisely for various values of

𝑝. Their results included that:

∙ If 𝑁𝑝 < 1, then a graph in 𝐺𝑁,𝑝 will almost surely have no connected components of size larger
than 𝑂(𝑙𝑜𝑔(𝑁)).

∙ If 𝑁𝑝 = 1, then a graph in 𝐺𝑁,𝑝 will almost surely have a largest component whose size is of order
𝑁
/�.

∙ If 𝑁𝑝 → 𝑐 > 1, where c is a constant, then a graph in 𝐺𝑁,𝑝 will almost surely have a unique giant
component containing a positive fraction of the vertices. No other component will contain more
than 𝑂(𝑙𝑜𝑔(𝑁)) vertices.

∙ If 𝑝 < �	−𝜖�𝑙𝑛𝑁
𝑁 , then a graph in 𝐺𝑁,𝑝 will almost surely contain isolated vertices, and thus be

disconnected.

∙ If 𝑝 > �	�𝜖�𝑙𝑛𝑁
𝑁 , then a graph in 𝐺𝑁,𝑝 will almost surely be connected.
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Thus 𝑙𝑛𝑁
𝑁 is a sharp threshold for the connectedness of 𝐺𝑁,𝑝.

Further properties of the graph can be described almost precisely as N tends to infinity.
Several other random networks have been proposed that change some of the properties of the initial

Erdős and Rényi random networks. The most obvious change to 𝐺𝑁,𝑝 is the change of the degree
distribution from a Poisson to a power law.

2.5.2. Stochastic Block Model

The stochastic block model is a generative model for random graphs. This model tends to produce
graphs containing communities, subsets characterized by being connected with one another with par-
ticular edge densities: for example, edges may be more common within communities than between
communities. Its mathematical formulation has been firstly introduced in 1983 in the field of social net-
work by Holland. The stochastic block model is important in statistics, machine learning, and network
science, where it serves as a useful benchmark for the task of recovering community structure in graph
data.

The stochastic block model takes the following parameters: the number N of vertices; a partition of
the vertex set {1, . . . , 𝑁} into disjoint subsets {𝐶	, . . . , 𝐶𝑟} called communities; a symmetric 𝑟×𝑟 matrix
𝑃 of edge probabilities.

The edge set is then sampled at random as follows: any two vertices 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑗 are connected
by an edge with probability 𝑃𝑖𝑗 . If the probability matrix is a constant, in the sense that 𝑃𝑖𝑗 = 𝑝 for all 𝑖
and 𝑗, then the result is the Erdős–Rényi model 𝐺𝑁,𝑝. This case is degenerate since the partition into
communities becomes irrelevant, but it illustrates a close relationship to the Erdős–Rényi model.

The planted partition model is the special case that the values of the probability matrix 𝑃 are a
constant 𝑝 on the diagonal and another constant 𝑞 off the diagonal. Thus two vertices within the same
community share an edge with probability 𝑝, while two vertices in different communities share an edge
with probability 𝑞. Sometimes it is this restricted model that is called the stochastic block model. The
case where 𝑝 > 𝑞 is called an assortative model, while the case 𝑝 < 𝑞 is called disassortative.

For example, we can think of a graph produced by the SBM with the following features: 𝑉 =
{1, 2, 3, . . . , 90} is the vertex set, the disjoint communities are 𝐶 = {𝐶	, 𝐶
, 𝐶�}, where 𝐶	 has 25
nodes (𝐶	 = {1, 2, 3, . . . , 25}), 𝐶
 has 30 nodes (𝐶
 = {26, 27, 28, . . . , 55}, and 𝐶� has 35 nodes
(𝐶� = {56, 57, 58, . . . , 90}. We could assume that the probability of having an edge between nodes
belonging to the same community is 0.8 for the three communities, while the probability of an edge
between nodes in two different communities is equal to 0.05. In this case the probability matrix 𝑃 ,
assuming that the rows and columns are the communities, has the form:

𝑃 =

⎛⎜⎜⎜⎝
0.8 0.05 0.05

0.05 0.8 0.05

0.05 0.05 0.8

⎞⎟⎟⎟⎠
An example of graph with these characteristics is:
The adjacency matrix 𝐴 of the graph, in which on the row and the columns there are the nodes, has

the entry 𝑎𝑖𝑗 equal to 1 if there is an edge between node 𝑖 and 𝑗, otherwise it is equal to 0. It is a
representation of the existing relations in the graph and it has the following form:

The matrix is symmetric since the graph is undirected. It is possible to notice how the matrix is
almost perfectly divided into three blocks, that correspond to the three communities: the only elements
that lie outside the blocks are the ones representing the edges between nodes belonging to different
communities.
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Figure 2.2: Example of graph generated by the Stochastic Block Model.

Figure 2.3: Adjacency matrix related to a graph generated by the Stochastic Block Mode.
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3 Modelisation of Anomaly Detection in Dynamic
Graphs for Reinforcement Learning

This chapter is dedicated to the formalization and application of dynamic programming methods to
detect anomalies in temporal graphs. In particular, the type of anomaly to detect is the one on edges.
Our aim is to explain how, given an undirected temporal graph as input, we model it as a Markov
Decision Process and how we can use dynamic programming methods to train an agent to detect
anomalies. Another fundamental step consists in the formal definition of the anomalies: we need to
define what are anomalies in this case, how it is possible to identify them and which is the ranking
model to adopt. The chapter starts with a recall of the theoretical concepts that will be exploited, and
then proceeds with the formalization steps mentioned before. Besides, the last section provides an
overview of the possible practical uses of the proposed detector.

3.1. Theoretical concepts

Before formalizing the problem, let us provide more details on the theoretical underlying concepts,
briefly introduced in the previous chapter, that are needed in this section.

As defined in (2.2), a graph series G (or dynamic graph) is an ordered set of graphs with a fixed
number of time steps. Formally, G = {𝐺𝑡}𝑇𝑡�	, where T is the total number of graphs, and 𝐺𝑡 = (𝑉,𝐸𝑡 ⊆
(𝑉 × 𝑉 )), with 𝑉 the vertex set, that is considered as fixed, and 𝐸𝑡 the edge set at time step t. Graph
series where 𝑡 → ∞ are called graph streams.

In our specific case, the type of anomaly to detect is the one on arcs, intended as three different
situations:

1) it can happen that the action expected is the addition of a certain arc, instead the performed action
is the addition of another arc, the removal of an arc or everything stays the same. We mark this
setting as anomalous, but it is necessary to understand why both the first arc is not present and
another arc is added/removed, or why nothing happens;

2) we mark as anomalous the situation in which the agent foresees the removal of a certain edge,
while in the real graph another arc is added/removed or nothing happens. As before, we need to
understand why the arc has not been removed and why another arc has been added/removed, or
why nothing happens;

3) the last case is when according to the agent the situation should remain unchanged, while actually
an arc is added or removed: we mark this addition/removal as anomalous.

The common element of these three cases is that we mark as anomalous every situation in which there
is no coincidence between what the agent expects and what actually happens.

Recalling definition (2.2.1.2), given G, the total edge set 𝐸 =
𝑇⋃︀
𝑡�	

𝐸𝑡, and a specified scoring function

𝑓 : 𝐸 → R, the set of anomalous edges 𝐸′ ⊆ 𝐸 is an edge set such that ∀ e’ ∈ 𝐸′, |𝑓(𝑒′) − 𝑓 | > 𝑐�,
where 𝑓 is a summary statistic of the scores f(e), ∀ e ∈ 𝐸, and 𝑐� a fixed threshold.
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In order to detect anomalies, we would like to apply dynamic programming techniques: the topic
has been widely treated in section 2.4. One requisite to apply DP methods is a known environment
modelled as Markov Decision Process: it is a tool for modeling sequential decision-making problems
where a decision maker interacts with a system in a sequential fashion. A Markov Decision Process is
a 4-tuple (𝑆,𝐴, 𝑝,𝑅), where:

∙ 𝑆 is the set of states called the state space;

∙ 𝐴 is the set of actions called the action space (alternatively, 𝐴(𝑠) is the set of actions available
from state 𝑠);

∙ 𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−	 = 𝑠,𝐴𝑡−	 = 𝑎} is the probability that action 𝑎 in state 𝑠 at
time 𝑡 will lead to state 𝑠′ and reward 𝑟 at time 𝑡+ 1;

∙ 𝑅(𝑠, 𝑠′, 𝑎) is the immediate reward (or expected immediate reward) received after transitioning
from state 𝑠 to state 𝑠′, due to action 𝑎.

The purpose of reinforcement learning is let the agent learn an optimal policy that maximizes the reward
function. A basic reinforcement learning agent interacts with its environment in discrete time steps: at
each time t, the agent receives the current state 𝑠𝑡 and reward 𝑟𝑡. It then chooses an action 𝑎𝑡 from the
set of available actions, which is subsequently sent to the environment. The environment moves to a
new state 𝑠𝑡�	 and the reward 𝑟𝑡�	 associated with the transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡�	) is determined. The goal
of a reinforcement learning agent is to learn a policy: 𝜋 : 𝐴 × 𝑆 → [0, 1], 𝜋(𝑎, 𝑠) = Pr(𝑎𝑡 = 𝑎 | 𝑠𝑡 = 𝑠)
which maximizes the expected cumulative reward. Formulating the problem as an MDP assumes the
agent directly observes the current environmental state; in this case the problem is said to have full
observability.

Dynamic programming methods reach this goal by the use of value functions to organize and structure
the search for good policies. As explained in section 2.4 and in [10], the two most famous and used
methods are policy iteration and value iteration.

Policy iteration works in this way: first, we fix an arbitrary initial policy 𝜋�. At iteration 𝑘 > 0, we
compute the action-value function 𝑞𝜋𝑘

(defined in 2.3.1) underlying 𝜋𝑘: this is called the policy evaluation
step. Next, given 𝑞𝜋𝑘

, we define 𝜋𝑘�	 as a policy that is greedy with respect to 𝑞𝜋𝑘
: this is called the

policy improvement step. We now make an example of policy iteration, taken from [2].
The example is related to car rental: let us suppose that Jack manages two locations for a car rental

company. Each day a certain number of customers go to the locations to rent cars: if Jack has an
available car, then he earns $10, if he doesn’t have disposable cars at that location the affair is lost.
A car becomes available for renting the day after it is returned. In order to be sure to have enough
available cars, Jack can move them between the two locations during the night, paying $2 per car. We
assume that:

∙ the number of cars requested and returned at each location are Poisson random variables, that is
the probability that the number is 𝑛 is 𝜆𝑛

𝑛� 𝑒
−𝑛, where 𝜆 is the expected number;

∙ at the first location 𝜆 is 3 for rental request and 3 for returns,

∙ at the second location 𝜆 is 4 for rental request and 2 for returns;

∙ there can be at most 20 cars at each location (additional cars will not be considered;

∙ a maximum of 5 cars can be moved from one location to the other.

We assume the discount rate to be 𝛾 = 0.9 and formulate the problem as a continuing finite MPD, where
the time steps are the days, the state is the number of cars at each location at the end of the day, and
the actions are the net number of cars moved during the night.
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The picture in the following page shows the sequence of policies found by policy iteration starting
from the policy that never moves any cars. In particular, the first five diagrams show, for each number
of cars at each location at the end of the day, the number of cars to be moved from the first location to
the second (negative numbers indicate transfers from the second location to the first). Each successive
policy is a strict improvement over the previous one, as assured by the policy improvement theorem,
and the last policy is optimal. Policy iteration converges in surprisingly few iterations as it often happens,
in this case just 4.

Figure 3.1: The sequence of policies found by policy iteration on Jack’s car rental problem (from
[2]), and the final state-value function.

Value iteration can be written as a simple update operation that combines the policy improvement
step and the truncated policy evaluation step. In particular, policy evaluation is stopped after just one
update of each state: for this reason, the computational cost of a single step in policy iteration is much
higher than that of one update in value iteration. However, after 𝑘 iterations, policy iteration gives a
policy not worse than the policy that is greedy with respect to the value function computed using 𝑘
iterations of value iteration (if the two procedures are started with the same initial value function).

The following example of value iteration is taken from [2], and it is entitled ”gambler’s problem”. A
gambler has the opportunity to bet on the results of a sequence of coin flips: if the coin comes up
heads, he wins as many dollars as he has put on that flip; if it is tails, he loses his stake. The game
ends when the gambler wins by reaching his goal of $100, or loses by running out of money. On each
flip, the gambler must decide what portion of his capital to stake, in integer numbers of dollars.

This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the gambler’s
capital, 𝑠 ∈ {1, 2, ..., 99}, and the actions are stakes, 𝑎 ∈ {0, 1, ...,min(𝑠, 100 − 𝑠)}. The reward is zero
on all the transitions, except those on which the gambler reaches his goal, then it is +1. The state-
value function gives the probability of winning from each state, and a policy is a mapping from levels of
capital to stakes: the optimal policy maximizes the probability of reaching the goal. Let 𝑝ℎ denote the
probability of the coin coming up heads: if it is known, then the entire problem is known and it can be
solved, for instance, by value iteration.

The policy found is optimal, but not unique. In fact, there is a whole family of optimal policies, all
corresponding to ties for the action selection with respect to the optimal value function.

The main limit of dynamic programming in reinforcement learning is computational: apart from the
simplest cases when the MDP has few states and actions, dynamic programming becomes infeasible.
As mentioned before, the problem is the curse of dimensionality, that is the fact that the number of states
often grows exponentially with the number of state variables. Moreover, having a perfect model of the
environment is not always possible in the real world. However, DP provides an essential foundation for
the understanding and developments of successive reinforcement learning methods.
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Figure 3.2: The figure (provided in [2]) shows the change in the value function over successive
sweeps of value iteration, and the final policy found, for the case of 𝑝ℎ = 0.4.

3.2. Formalization of the problem

This section contains the modeling and formalization of the anomaly detection problem in our particular
setting. First, the attention is focused on how to model the undirected temporal graph in input into
a Markov Decision Process, how to understand the dynamics of the environment and how to set the
rewards. Once this is done, we need to formalize what we mean by edge anomalies, how the anomalies
are identified, and how to rank them. The last step concerns the application of dynamic programming
methods: we will do a practical example in order to understand better.

3.2.1. Graph modeling

The input of our problem is an undirected temporal graph, but in order to apply dynamic programming
methods we need to have the environment modeled as Markov Decision Process. One important pre-
requisite of the input graph is to be structured in the following way: each time step 𝑡 has to corresponds
to the addition of an arc, the removal of an arc or the graph does not change. In the cases in which
we do not have this setting, it is necessary to perform some preliminary operations in order to reach
it. Once this condition is achieved, starting from the dynamic graph we have to define the 4-tuple
(𝑆,𝐴, 𝑝,𝑅) mentioned above.

The set of states 𝑆 is made by all the possible configurations of the graph. We assume for simplicity
that the set of nodes 𝑉 is fixed. Since the anomalies to detect are on the arcs, the set of states
𝑆 contains all the possible combinations of the arcs between the existing nodes: each combination
constitutes a state 𝑠. Assuming that the number of nodes is 𝑛, that is |𝑉 | = 𝑛, the total number of arcs
is equal to |𝐸| = 𝑛�𝑛−	�


 (the quantity 𝑛(𝑛− 1) is divided by 2 since the considered graph is undirected).
The cardinality of 𝑆 is given by all the possible subsets of 𝐸, that is

|𝑆| = 2|𝐸| = 2
𝑛�𝑛−	�


 ∼ 2
𝑛



 . (3.1)

It is easy to understand how fast the number of states grows with respect to the number of nodes, and
how the dynamic programming methods can become computationally infeasible.
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For what concerns the set of actions 𝐴, the possible actions are 3: add an arc, remove an arc or do
nothing. So, if the the cardinality of the edge set is |𝐸| = 𝑒, then the possible actions are

|𝐴| = 𝑒+ 𝑒+ 1 = 2𝑒+ 1 ∼ 𝑒 (3.2)

The first 𝑒 actions are the ones relative to the addition of the arcs (one for each arc), the second term
is relative to the removal of each arc, and the 1 is the action ’do nothing’. Clearly, not all the actions
can be performed in any state: for example, if an arc is not present, it is not possible to remove it. If the
agent chooses to perform an action that is not allowed, the graph configuration remains the same and
the reward is zero. This setting aims to be as general as possible: then, depending on the cases, it can
be modified.

The function 𝑝, that defines the dynamics of the environment, depends on the specific problem. In
our case it describes the probability that, being in a certain configuration 𝑠 of the graph at time 𝑡 and
performing the action 𝑎 of adding/removing an arc or doing nothing, we will get at time 𝑡 + 1 a certain
new configuration 𝑠′ and a reward 𝑟. We need to have a perfect knowledge of the dynamics that regulate
the graph: this means that another fundamental characteristic of the graph we have in input is that it is
without anomalies, and that the sequence is long enough to be able to extrapolate the normal behavior.
To make the agent learn what is normal, we define the dynamics of the environment in a way that
the only situations that are positively rewarded are the ones present in the clean sequence. In the
implementation chapter we will explain how it is actually done, fixing some appropriate values for the
rewards. Obviously, reasoning in this way the involved policies are stochastic: it can happen that one
state is present several times in the sequence, and that the action performed in the state is not always
the same. So, we affirm that more than one action is possible from states that appear more than one
time, and the probability of each action of being performed depends on how many times that action is
performed in that state considering the whole sequence.

The reward set 𝑅 is user-defined and problem-dependent, so it is our task to determine it in the best
possible way. In fact, it is our way of communicating to the agent what we want to achieve, and if it is not
settled appropriately the agent will not be able to learn correctly. The idea is to base the definition of the
reward function on the clean sequence that we have: through the sequence, we have to find common
patterns and behaviors. In this case it could be a good idea to define the reward set 𝑅 = [0, 1], giving a
reward of 1 when the state transition is present in the clean sequence and 0 otherwise.

In order to understand better, we can make an example. Let us suppose that the graph in the picture
is the undirected dynamic graph in input and that our aim is to model it as explained. In this case we
represent only the first 5 time steps.

Figure 3.3: Example of a temporal graph captured in 5 subsequent time steps.

The graph is composed by |𝑉 | = 7 nodes, where 𝑉 = {1, 2, 3, 4, 5, 6, 7}, so the total possible number
of arcs is |𝐸| = 21, the number of states is 2
	 (given by (3.1)), and the number of actions is 43 (given by
(3.2)). As it is possible to notice, it looks as if there are two different communities in the graph, that are
𝐶	 = {1, 4, 5} and 𝐶
 = {2, 3, 6, 7}. The red arcs are the ones that are added between two consecutive
steps, while those dashed in orange are the arcs removed.

It is not practical to enumerate all the possible states and actions, but we can make some examples:
some possible states are given by the 5 snapshots represented in the picture. For what concerns the
actions, we have:
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∙ do nothing;

∙ add an arc between node 1 and 2;

∙ remove an arc between node 1 and 2;

∙ add an arc between node 1 and 3;

∙ ...

As said, not all the actions are possible in every state: if the agent selects an action that is not allowed
(for example it removes an arc that is not present) the situation will remain the same.

Considering the reward function and the dynamic function, following the idea we have already pre-
sented, we can give a reward of 1 when the transition is present in the sequence and 0 otherwise.
For this reason, as anticipated, the idea is to have a sufficiently long sequence of the temporal graph
without anomalies.

Clearly, the assumption of having such clean sequence is quite unrealistic, as it is the assumption of
having a perfect model of the environment (the two things coincide in this case). As explained before,
the aim of the report is to understand if the reinforcement learning approach is meaningful for the
anomaly detection problem on temporal graphs: according to the results obtained in the experimental
part in Chapter 4, we will decide how to proceed.

3.2.2. Formalization of the anomaly detection problem

It is necessary to define what we mean by anomalies, how we find them and how to assign an anomaly
score to rank them. As said before, the anomaly is on the edges.

First of all we need to understand how to identify the anomalies: the basic concept is that we consider
as anomalous every edge that our trained agent does not foresee. This means that, once the detector
is ready, it will make forecasts about the behavior of the graph in the future: if the behavior of the agent
and the one of the graph coincide, then we will not have anomalies, otherwise we will. By behavior we
intend the edge added/removed or the action of doing nothing at each time step: if according to the
agent the action at a certain time 𝑡 is the addition of an arc between two certain nodes 𝑖 and 𝑗, while
in the graph there is the addition of an arc between the nodes 𝑗 and 𝑘 with 𝑘 ̸= 𝑖, then the edge {𝑗, 𝑘}
will be marked as anomalous. It is assumed, in fact, that the trained agent has learnt what is normal for
the evolution of the graph, so when there is no coincidence between an action that he makes and the
actual evolution of the graph, we suppose that there is an anomalous situation.

Clearly there is also the necessity to rank the anomalies, that is to assign them a score in order to
understand their gravity. In this case, we have two options that we can follow: binary or non-binary
score. The binary solution, that is the simplest one, does not actually allow us to rank the anomalies,
since it only assigns 1 to the edge if it is anomalous and 0 otherwise. So, roughly speaking, when there
is no coincidence between the action expected by the agent and the one happened in the graph, we
mark the situation as anomalous, but it is not possible to say anything about the severity of the anomaly
itself.

The second option, instead, aims not only to identify the anomaly, but also to give it a score in order
to be able to make a ranking. The principle in identifying the anomaly is the same: when there is no
correspondence between what expected by the agent and what actually happens, we have an anomaly.
We can now consider the two situations, that is the expected one and the actual one: we have to
find a way to compare them in order to evaluate the importance of the anomaly. One possibility could
be to use the value function: let us recall that the value function 𝑣𝜋(𝑠) is a measure of the long-term
desirability of the state after taking into account the states that are likely to follow according to policy
𝜋 and the rewards available in those states. We seek actions that bring about states of highest value,
not highest reward, because these actions obtain the greatest amount of reward in the long run. We
need to remember that we have already found the optimal policy 𝜋*, so the value function 𝑣𝜋*(𝑠) is
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already the highest one for each 𝑠 ∈ 𝑆. What we do is compute the value function at the two states
𝑠 (the expected one) and 𝑠′ (the actual one), make the subtraction between the value of the expected
state and the value of the actual state and take this quantity as anomaly score. What we expect, if the
problem is well formalized, is that 𝑣𝜋*(𝑠′) ≤ 𝑣𝜋*(𝑠), otherwise the policy 𝜋* would not be optimal. If so,
if the difference is performed in the correct order, the anomaly score will always be positive, otherwise
the policy is not optimal.

One thing to do is to normalize this quantity: what we want to do is to measure the gravity of the
anomaly considering how much the value function is reduced between the foreseen situation and the
real one. Without the normalization, it could happen that an anomaly score is much higher than another
one, but just because the value function in consideration are higher in magnitude. For example, it may
happen that 𝑣𝜋*(𝑠	) − 𝑣𝜋*(𝑠
) = 10 − 1 = 9 and 𝑣𝜋*(𝑠�) − 𝑣𝜋*(𝑠�) = 50 − 25 = 25. Obviously 25 > 9,
but in the first case the value function 𝑣𝜋*(𝑠
) is 	

	� of 𝑣𝜋*(𝑠	), while in the other case it is just 	

 , so the

score does not perfectly reflect the importance of the anomaly.
We could define the anomaly score as 1− 𝑣𝜋* �𝑠′�

𝑣𝜋* �𝑠� , that is 1 minus the ratio between the value function
of the actual state and the value function of the expected one. Again, if the problem is well formalized,
we get that 𝑣𝜋*(𝑠′) ≤ 𝑣𝜋*(𝑠), so 0 ≤ 𝑣𝜋* �𝑠′�

𝑣𝜋* �𝑠� ≤ 1 and the anomaly score is between 0 and 1. In this
way, we get a score that is normalized and that takes into account the rate of change of the value
function. Moreover, we could introduce a parameter that works as a threshold: if the anomaly score is
below the threshold, we do not consider that situation anomalous. This structure makes sense because
the policies involved in this problem are stochastic. It means that, given a state 𝑠, the policy does not
return a single action to be performed, but for each action there is a certain probability of being taken:
we denote with 𝜋(𝑎|𝑠) the probability of performing action 𝑎 when in state 𝑠. Otherwise, if adopting a
deterministic policy that for each state returns just one action to be performed, we would get a structure
that is too rigid. So, even if the action performed by the agent and the one in the real graph are not
the same in a certain state, it could be that both actions have a certain probability different than zero
of being performed, meaning that we are not in the case of an anomaly. Since the probability value of
taking an action given a certain state is involved in the computation of the value function, it influences
also the anomaly score, resulting in a higher anomaly score when the action is highly improbable and
viceversa.

3.2.3. Application of dynamic programming methods

Once that the Markov Decision Process has been properly defined, we can proceed to the application
of dynamic programming methods, in particular value iteration and policy iteration. Since this step is
quite standard, in order to clarify it we will provide a very simple example, where the dimensionality of
the state space is very small to allow a graphical representation.

The sequence considered will be the following:
We have 4 nodes: this means that there are 64 states and 13 possible actions. In each state it

is potentially possible to perform all the actions, except for removing an edge that is not present and
adding an edge that is already present. If the agent tries to perform actions that are not allowed, the
situation remains unchanged. To apply dynamic programming methods, we need a perfect model of
the environment as Markov Decision Process. In order to extrapolate the normal behavior, we assume
that we have a clear sequence of the temporal graph that is long enough. Usually, by long enough we
intend that the sequence consists of a number of steps equal to 5%-10% of the total number of states,
but in very small graphs like this one it is not sufficient. In our case we suppose that the sequence has
a length of 20 steps, that consists in the two times repetition of the sequence reported in the picture.

Given this clear sequence, we understand what is the normal behavior of the graph. For simplicity,
we give a name to the states: we call 𝑠	 the state at time step 𝑡 = 1, 𝑠
 the state at time step 𝑡 = 2, and
so on, up to state 𝑠	�. For what concerns the other states, we do not name precisely since we will not
need to reference them. We name 𝑎	 the action of going from 𝑠	 to 𝑠
, 𝑎
 the action of going from 𝑠
 to
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Figure 3.4: Example of a temporal graph.

𝑠�, up to 𝑎�. Due to the smallness of the net, we can write explicitly the dynamics of the function, that
is 𝑝(𝑠′, 𝑟|𝑠, 𝑎), the probability of going to state 𝑠′ with a reward of 𝑟 starting from state 𝑠 and performing
action 𝑎.

𝑝(𝑠
, 1|𝑠	, 𝑎	) = 1

𝑝(𝑠�, 1|𝑠
, 𝑎
) = 1

𝑝(𝑠�, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠
, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠�, 1|𝑠
, 𝑎
) = 1

𝑝(𝑠�, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠�, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠�, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠	�, 1|𝑠�, 𝑎�) = 1

𝑝(𝑠	, 1|𝑠	�, 𝑎	�) = 1

In all the other cases, 𝑝 is equal to 1 when the reward is equal to 0, otherwise 𝑝 is 0. Now we can try to
apply the policy iteration and the value iteration methods.

In policy iteration we start with arbitrary policy and value function, and perform in loop two subsequent
steps: policy evaluation and policy improvement, as long as one optimal policy is found. Value iteration
can be written as a simple update operation that combines the policy improvement and truncated policy
evaluation step, that is stopped after just one update of each state. The results obtained are the same
from both methods: the optimal policy advises to perform 𝑎	 in 𝑠	, 𝑎
 in 𝑠
 and so on, while the highest
values of the optimal value function are found in states 𝑠	, 𝑠
, ..., 𝑠	�, all as expected.

Once one optimal policy and the optimal value function have been found, it is possible to test the
performance of the detector. In order to do so, we add manually some anomalies and then verify if the
detector is able to find it, as we will see in Chapter 4.

3.3. Practical uses

The anomaly detection problem is a significant task and, due to its practical importance, has numerous
high-impact applications in different areas. The growing attention in the past years towards spotting
anomalies in data that are inter-dependent has lead to a wide range of new techniques to accomplish
this task. Due to the usefulness of these methods, in this section we try to list the most common
graph-based detection applications in the real-world, following the classification made in [3].
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3.3.1. Anomaly detection in Telecommunication networks

We start with anomalies in telecommunication networks: there are many types of telecommunication
frauds, but one of the most prevalent is known as the subscription fraud. In this case the fraudster
acquires an account using false identity with the intention of using the service for free and not making
any payments. In this case the nodes of the graph are the phone accounts, and the set of edges is
made by the calls between them. What has been found is that fraudulent phone accounts are usually
linked, since fraudsters either directly call each other or they call they call the same phone numbers,
and also that it is possible to spot new fraudulent accounts by the similarities of their net, due to the
fact that detected and disconnected fraudsters by the phone operator create new accounts that exhibit
similar calling habits.

Type of network Telecommunication

Nodes Phone accounts

Edges Calls between phone accounts

Attributes -

Anomaly Use of false identity without paying the service

Table 3.1: Summary table for anomaly detection in telecommunication networks.

3.3.2. Anomaly detection in Auction networks

Another common type of anomaly is the one in auction networks: auction sites, such as eBay, are
attractive target for fraudsters. The majority of online auction fraud occur as non-delivery fraud, that is
the seller does not deliver/ship the purchase to the buyer. In this case the nodes of the graph are the
users, the directed arcs represent the transactions from the person who sells to the person that buys.
The main reason for using graph-based methods in this case is that it is not sufficient to structure the
detection only on the individual’s features (like age, location, and so on) that are easy to fake. The
fraudsters have only a local view of the net in which they operate, so it is harder for them to fit in
without generating any suspect. Besides, the analysis of the fraudsters’ behavior reveals that in order
to manipulate the feedback and reputation system, fraudsters create additional accounts that have the
task of boosting their reputation. Thanks to the behavior study, it is possible to define what is the usual
pattern followed by a fraudster, allowing us to model what is considered normal and what not and to
apply our method.

Type of network Auction

Nodes Users of auction sites

Edges Transactions from the person who sells to the one who

buys

Attributes Users’ age, geo-location, login times, session history

(nodes)

Anomaly Non-delivery fraud

Table 3.2: Summary table for anomaly detection in auction networks.
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3.3.3. Anomaly detection in Financial networks

Relational learning has been used also in security fraud detection, where where the task is to find those
security brokers that will probably commit violations of securities regulations in the future. Besides using
information intrinsic to the brokers, such as the number and type of past violation, it is useful to introduce
also relational information, such as social, professional, and organizational relationships among the
brokers. In this application the likely of committing frauds depends highly on social phenomena, so this
is the reason why having a graph-based approach is fundamental and gives a more complete view on
the situation.

Type of network Financial

Nodes Security brokers

Edges Social, professional, and organizational relationships

among the brokers

Attributes Type of relationship (edges), number and type of past

violations among the brokers (nodes)

Anomaly Violations of securities regulations

Table 3.3: Summary table for anomaly detection in financial networks.

3.3.4. Anomaly detection in Trading networks

Anomalies in financial trading network consists in a group of traders that trade among each other in
certain ways so as to manipulate the stock market. In particular, those traders may perform transactions
on a specific stock among themselves for a certain amount of time, during which the overall shares of
the target stock in their trading accounts increase, and they produce a large volume of transactions
on this stock. After the prices has increased, the traders start selling the shares to the public. The
behavior of the group of traders is faced with in graph-based terms. In the first stage, where they
perform transactions among themselves, the in-link weights are expected to be quite high, while in the
second stage, where they sell the shares to the public, the out-link weights highly exceed the in-link
ones. These fraudulent patterns are formally defined in graph-theoretic terms, so it is possible for us to
easily apply our method.

Type of network Trading

Nodes Traders

Edges Transactions on stocks

Attributes -

Anomaly Increasing falsely the values of stocks in order to sell

them with a higher price

Table 3.4: Summary table for anomaly detection in trading networks.
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3.3.5. Anomaly detection in Social networks

One group of malware detection methods focuses on social malware in social networks such as Face-
book, the so called socware. A socware is any post appearing in one’s feed in social media platforms
that (1) leads the user to malicious sites, (2) makes the user perform certain actions with the promise
of a false reward, (3) makes the user like or boost the reputation of certain pages without knowing, (4)
makes the user replicate that the post in an unconscious way. Clearly, one way to keep track of these
anomalies is by checking how the posts replicate, how much the likes of a page increase in a certain
amount of time, the likes and comments under the posts and so on, in addition to other content-based
features.

Type of network Social

Nodes Users of social networks

Edges Interactions between the users

Attributes Activity of the users, as number of likes, visited pages

(nodes)

Anomaly Lead the users to commit actions unconsciously, as

visit malicious sites

Table 3.5: Summary table for anomaly detection in social networks.

3.3.6. Anomaly detection in Computer networks

The last application that we present is related to anomalies in computer networks, in order to detect
cyber-attacks and intrusions. In this graph, the nodes represent the agents in the networks, such as
file/directory servers and client nodes, while the edges represent their communication over the network,
and the possible edge weights capture the volume or frequency. The assumption when tracking the
dynamic nature of the network graph is that the communication behavior of a compute node changes
when there is an attack. It is necessary to consider also the relational characteristic for three main
reasons: (1) given the large number of compute nodes, it is impossible to monitor them individually;
(2) the behavior of the nodes may depend on the behavior of the others, so monitoring them singularly
could lead to lose information; (3) due to the large number of edges, it is impractical to study the highly
dynamic time-series of communications volume in tandem.

Type of network Computer

Nodes Agents in the networks, such as file/directory servers

and client nodes

Edges Communication over the network

Attributes The volume or frequency of the communication (edges)

Anomaly Attacks to the network

Table 3.6: Summary table for anomaly detection in computer networks.

These are just some of the possible applications of anomaly detection in temporal graphs, but there
are many others. Usually, there exist methods that are application-dependent, that rise to be applied
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in specific situations. Our method is more general, but there are two main obstacles: one is that we
need a perfect model of the environment, the other is that the method is not suitable to deal with very
large graphs. The first problem can be overcome, thanks to behavioral analysis and known fraudu-
lent patterns that have already been found. The second is a limit of our method, related to dynamic
programming: using approximate reinforcement learning methods it is possible to find a more flexible
solution, that does not have issues in dealing with graph of big dimensions.
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4 Implementation details and experimental proto-
col

This chapter contains the implementation of the method formalized in the report and the tests made to
evaluate its performance; the programming language chosen is Python. The first step is the generation
of the clean temporal sequences that will be used to train the agent: we explain how they are created
and which are their characteristics. Given a temporal graph without anomalies, we need to extrapolate
from it the dynamics of the normal behavior and to model the problem into a Markov Decision Process
in order to apply dynamic programming methods. The following step consists in the training of the
agent through the algorithms explained in the previous chapters. Once the detector is ready, we test
its abilities in recognizing anomalies and in having learned the normal behavior. What we do is give a
practical realization of the method, trying to understand its limits and possible improvements. Moreover,
we try to practically go beyond the supervised setting, with the implementation of a different kind of
experiment.

4.1. Dynamic Graphs Generation

As underlined several times, one of the main limits of dynamic programming in reinforcement learning
is computational: if the input is too big in dimension, the computation becomes infeasible. Besides, our
method requires a sequence of the temporal graph without anomalies: since it can be hard in the real
world to find a temporal graph with both these characteristics, we have decided to use synthetic graphs.
By synthetic graphs we intend graphs that do not come from real-world applications, but that have been
generated ad hoc. Clearly, this choice comes from a necessity, but also to simplify the approach to the
first implementation of the method.

Graph at time t=0

As said, the idea is that the length of the sequence is around 5%-10% of the total number of states
2

𝑛�𝑛−	�

 , with 𝑛 number of nodes of the graph. The graphs considered have to be quite small in di-

mension, but the number of nodes is chosen in a way to reach a compromise between keeping the
dimension small and having a consistent sequence of the clean temporal graph. If the number of nodes
is very big or very small, we need to personalize the assumption on the length of the sequence to make
it practically useful. We suppose that the nodes are uniquely labelled at time 𝑡 = 0, and that they remain
the same throughout the whole sequence.

At time 𝑡 = 0 the graph is generated by one of the two methods exposed in section 2.5, that are
Erdős–Rényi and Stochastic Block Model. To recall these models, we make a short theoretical recap.

∙ Erdős–Rényi model: in input are given the number of nodes N and the probability 𝑝 of edge
existence between nodes. The vertices are linked at random with probability 𝑝 to form a graph
that belongs to the set of graphs 𝐺𝑁,𝑝.

∙ Stochastic Block Model: it tends to produce graphs containing communities, subsets character-
ized by being connected with one another with particular edge densities. It takes the following
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parameters: the number N of vertices; a partition of the vertex set {1, . . . , 𝑁} into disjoint subsets
{𝐶	, . . . , 𝐶𝑟} called communities; a symmetric 𝑟 × 𝑟 matrix 𝑃 of edge probabilities. The edge set
is then sampled at random as follows: any two vertices 𝑢 ∈ 𝐶𝑖 and 𝑣 ∈ 𝐶𝑗 are connected by an
edge with probability 𝑃𝑖𝑗 .

We will generate different starting graphs for each model, giving in input different parameters.

Graph sequence

Once we have generated the random graph with one of the two methods, that is the starting point of
our sequence, we can proceed to produce the remaining part of the temporal graph. Logically, the
sequence has to follow the same rules of the starting graph: if the Erdős–Rényi model is chosen, the
edges will be added randomly following the probability 𝑝. In the same way, if the Stochastic Block Model
is chosen, it is necessary to keep in mind the existing communities and probabilities of arc formation
when adding edges.

The sequences are modeled in a precise way: each time step corresponds to an action, that is the
addition of an arc, the removal of an arc, or no modification. When there is no modification, we intend
that for 5 seconds nothing happens in the graph. Once the sequence is created, we are ready to
train the agent. Clearly, we produce more than one sequence in order to make more experiments and
understand better the performance of the agent.

4.2. Training and testing of the agent

After having generated the clean temporal sequences, we need to extract from them the dynamics of
the environment. As recalled several times, in fact, to be able to apply dynamic programming methods
in reinforcement learning we need to set the problem as a Markov Decision Process. We need to
formalize the state set 𝑆, the action set 𝐴, the reward function, and the dynamics 𝑝.

4.2.1. Extraction of the dynamics

Recalling what explained in 3.2, we say that the space of the states 𝑆 is composed by all the possible
configurations of the graph, the space of the actions 𝐴 is made by the actions add and remove an
arc (both repeated for each edge) plus the action in which nothing is modified. For what concerns the
reward function and the dynamics, we need to structure them relying on the clean temporal sequence.
We suppose that the reward set 𝑅 is made by 𝑅 = [0, 1]. Basically, what we do is: given a state 𝑠𝑖 that
appears in the clean sequence, we define the set 𝑆𝑠𝑖 , that is composed by all those states that in the
clean temporal sequence are reached from 𝑠𝑖. Since the sequence is modelled in a way that between
one step and the other only one action is performed, we denote with 𝑎𝑖𝑗 the action that leads from state
𝑠𝑖 to state 𝑠𝑗 , where 𝑠𝑖 and 𝑠𝑗 are two consecutive steps in the temporal graph. We define the dynamics
for those states 𝑠𝑖 that appear in the clean sequence in the following way:

𝑝(𝑠𝑗 , 1|𝑠𝑖, 𝑎𝑖𝑗) = 1, 𝑠𝑗 ∈ 𝑆𝑠𝑖 ;

𝑝(𝑠𝑗 , 0|𝑠𝑖, 𝑎𝑖𝑗) = 0, 𝑠𝑗 ∈ 𝑆𝑠𝑖 ;

𝑝(𝑠𝑘, 0|𝑠𝑖, 𝑎) = 1, ∀𝑎 ∈ 𝐴, ∀𝑠𝑘 /∈ 𝑆𝑠𝑖 .

Due to the large number of states, it can happen that the agent encounters states that are not in the
clean sequence: in this case the situation is a bit more complicated, since we do not have information
about those states. The agent cannot mark as anomalous every situation that it does not encounter
in the clean sequence, otherwise we would have a too rigid structure. In these cases, the detector
behaves in the following way:

𝑝(𝑠𝑗 , 0|𝑠𝑚, 𝑎𝑚𝑗) = 1, 𝑠𝑗 ∈ 𝑆𝑠𝑚 .
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We denote with 𝑠𝑚 a state that does not appear in the normal behavior, 𝑆𝑠𝑚 is the set of all the states
reachable from 𝑠𝑚, 𝑎𝑚𝑗 is the action that leads to the configuration 𝑠𝑗 starting from the configuration 𝑠𝑚.

The stochastic policy that comes out from this configuration will be set in the following way:

∙ if the state 𝑠 appears in the clean sequence, the policy 𝜋(𝑎|𝑠) will be equal to the number of times
that the action 𝑎 is performed in state 𝑠 divided by the number of times the state 𝑠 appears in the
sequence;

∙ if the state 𝑠 does not appear in the clean sequence, than every allowed action from that state will
be equiprobable in the policy.

Policy iteration

In order to understand how the policy iteration method is implemented, we insert a formulation of its
pseudo-code taken from [2].

Figure 4.1: Pseudo-code of policy iteration take from [2].

The pseudo-code reflects the structure of the method: we start with an arbitrary policy and an ar-
bitrary, and then we perform the two steps of policy evaluation and policy improvement. In policy
evaluation the parameter 𝜃 gives a stopping criteria: when the difference in absolute value between the
old value function and the new one is smaller than 𝜃, then we can end the loop. Unless 𝜃 is equal to
zero, through this implementation of policy iteration we are able to find an approximation of one optimal
policy, with a degree of closeness to the exact one that varies according to the choice of 𝜃.

We need to pay attention to one important aspect: as anticipated, the policy in our case is stochastic.
The structure of the pseudo-code remains the same, but it is necessary to take into account that there
can be more than one action that maximizes the value function, and all of them need to be included in
the policy with different probabilities of being taken.

Value iteration

For the value iteration algorithm, as before, we insert a formulation of its pseudo-code taken from [2].
As before, we start with an arbitrary value function V: we perform the policy evaluation and the policy

improvement, with the difference that policy evaluation is truncated at the first step. For this reason, even
if the results of these two algorithms are almost the same, in value iteration there is less computational

Territori Aperti
37



Figure 4.2: Pseudo-code of value iteration taken from [2].

effort. Also in this case we need to remind that the policy is stochastic, making the same considerations
as before.

4.2.2. Detector Testing

When the agent is trained, we can test its capabilities: in order to understand the actual performance
of the detector, we extract from the training sequence couples of consecutive snapshots. Given this
set of couples, we modify some of the second snapshots: what we do is introducing some anomalies
by adding or removing edges in positions where they are not expected or expected to be. So, we get
these couples of consecutive snapshots, some of them have been modified, others not. To evaluate the
goodness of the performance, we make statistics about how many anomalous situations have been de-
tected compared to how many anomalous situations had been inserted. Moreover, we collect statistics
also about those couples that have not been modified, evaluating if the agent has learned the normal
behavior or not. Let us make an example considering the graph presented in 3.2.3.

Figure 4.3: Example of anomaly.

In the picture, we have a difference between the expectation of the detector and what happens in
reality. The couples made by two consecutive snapshots is made by considering the graph at time 𝑡 = 3
and 𝑡 = 4, modifying the second one. According to the normal behavior learned by the agent, the action
to perform is the removal of the edge (1,2), while actually there is the adding of the edge (2,3). In these
cases an anomaly is reported, as it should be.

Another example is reported in the following picture:
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Figure 4.4: Example of normal behavior.

The couple of consecutive snapshots is the same as before, but this time it has not been added any
anomaly. This kind of testing is made to understand if the agent has learned the normal behavior, and
in this specific case we can give a positive answer since there is coincidence between the choice of the
detector and the clean testing couple.

4.3. Experiments

In this section is presented the implementation of the algorithm developed in the report and the exper-
iments made, specifying the parameters chosen for each instance of the experiment and the obtained
results. First, we give a structure of the general procedure followed to carry the experiment, then we
report the particular examples made and their results.

4.3.1. Experimental Protocol

Each repetition of the experiment is based on a different synthetic temporal graph, that is generated as
explained in the previous section. We try to keep a balance between graphs generated following the
principles of the Erdős–Rényi model and graphs generated following the principles of the Stochastic
Block Model. In order to keep the explanation of the structure as general as possible, we will specify
the parameters chosen only at the end.

One instance of the experiment is carried in the following way:

1) The first thing to do is generate the starting graph of the sequence, so we fix the number of nodes
𝑛 of the graph and a random model is chosen between Erdős–Rényi model and SBM: the starting
graph is ready.

2) We now need to create the remaining part of the sequence: the criteria to produce it need to
respect the principle of the generative model chosen, and the length of the sequence 𝑙 is equal
to the 5%-10% of the number of states 2

𝑛�𝑛−	�

 . Clearly, we can decide to generate a sequence

where 𝑙 is 10% of the number states and then truncate it according to the necessities, in order to
understand how the performance changes when the sequence is shorter or longer.

3) We formalize the problem as an MDP and train the agent on the sequence using value iteration
and policy iteration (the results should coincide). What we want in output is an optimal stochas-
tic policy and the optimal value function, learned on the sequence that represents our normal
behavior.
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4) After the detector is ready, we evaluate its capabilities. We want to understand both if it has
learned the normal behavior and if it is able to detect anomalies.

1) We extract from the sequence couples of consecutive snapshots.

2) We modify the second snapshot of 25% of the couples, that is we insert an anomaly, and we
leave the remaining 75% as it is, because by definition an anomaly is something rare. The
couples to modify are chosen randomly but maintaining this proportion.

3) We observe how the agent behaves on the test couples, if it has understood the normal
behavior and if it is able to detect anomalies, collecting the statistics of its performance.

Once this kind of procedure has been repeated several times, we aggregate all the statistics together
trying to produce a meaningful analysis. The time computational complexity of one cycle is 𝑂(𝑚|𝑆|
|𝐴|),
where 𝑚 is the number of rounds in value iteration / policy iteration.

In particular we have decided to start choosing 𝑛 = 5, so the graphs will have 5 nodes, which means
that the total number of states will be 1024 and the total number of actions 21. The length 𝑙 of each
sequence will be around 10% of the cardinality of the state set 𝑆, that is 𝑙 = 102. By creating sequences
of this length, we are able to cut them and consider also shorter sequences, to expand our analysis. The
discount factor 𝛾 is 0.5, and the stopping criteria 𝜃 is equal to 10−
. We will conduct 34 repetitions of the
experiment, that is we will create 34 different temporal graphs, 17 generated following the Erdős–Rényi
model, the other half following Stochastic Block Model. For what concerns the couples of consecutive
snapshots, there are two ways of selecting them: we could consider the whole sequence, meaning that
we consider consecutive couples of snapshots generated moving one step forward in the sequence.
The other option consists in considering not all the possible couples, but half of them, by selecting
consecutive couples of snapshots moving two steps forward in the sequence.

To evaluate the goodness of the detector we have decided to report the confusion matrix, or error
matrix, a table that allows the visualization of the performance of an algorithm. It has the following form:

Figure 4.5: Example of confusion matrix.

In our case the possible classes are two: anomalous (P = positive) and not anomalous (N = negative).
By confronting the results of the predicted class and that of the actual class, four different combinations
come out:

1) True Positive (TP): when there is actually an anomaly and the agent detects it.

2) False Negative (NP): when there is an anomaly but the agent is not able to detect it.

3) False Positive (FP): when there is not any anomaly but the agent detects one.

4) True Negative (TN): when there is not any anomaly and the agent thins everything is normal.

Using these elements it is possible to compute other measures to assess the performance of the
method, under the condition that the set used to perform the testing is balanced between anomalous
and not anomalous cases. The measures we will compute are accuracy (ACC), recall (true positive rate
- TPR) and specificity (true negative rate - TNR).

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 +𝑁
,

Territori Aperti
40



with 𝑃 = 𝑇𝑃 + 𝐹𝑁 and 𝑁 = 𝑇𝑁 + 𝐹𝑃 . Accuracy is the number of correctly predicted data points out
of all the data points.

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 1− 𝐹𝑃𝑅,

with 𝐹𝑃𝑅 false positive rate. The true positive rate refers to the proportion of those data points that
received a positive result on the test out of those that actually have the condition.

𝑇𝑁𝑅 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 1− 𝐹𝑁𝑅,

with 𝐹𝑁𝑅 false negative rate. The true negative rate refers to the proportion of data points that received
a negative result on the test out of those that do not actually have the condition.

4.3.2. Results of the experiment

We now report the results of the experiment, considering separately the 17 sequences generated ac-
cording to Erdős–Rény model, and the 17 according to Stochastic Block Model. The testing set used
for each sequence is composed by 39 normal couples and 12 anomalous couples. Below we can find
the confusion matrices for the two cases, reporting for each entry the mean value and its standard
deviation.

Figure 4.6: Confusion matrix for the ER sequences.

Figure 4.7: Confusion matrix for the SBM sequences.

As expected, the mean is near to the optimal results. The standard deviation is a measure of the
amount of variation or dispersion of a set of values: a low standard deviation, as in this case, indicates
that the values tend to be close to the mean of the set. This measure confirms the consistency of the
results of the experiments.

Now we can compute accuracy, true positive rate and true negative rate, using the values in the mean
table. We start with the ER sequences:

𝐴𝐶𝐶𝐸𝑅 = 0.99

𝑇𝑃𝑅𝐸𝑅 = 1 𝐹𝑃𝑅𝐸𝑅 = 0

𝑇𝑁𝑅𝐸𝑅 = 0.99 𝐹𝑁𝑅𝐸𝑅 = 0.01

We proceed with the SBM sequences:
𝐴𝐶𝐶𝑆𝐵𝑀 = 0.99

𝑇𝑃𝑅𝑆𝐵𝑀 = 1 𝐹𝑃𝑅𝑆𝐵𝑀 = 0
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𝑇𝑁𝑅𝑆𝐵𝑀 = 0.99 𝐹𝑁𝑅𝑆𝐵𝑀 = 0.01

It is clear that the performance of the method is optimal, both in understanding the normal behavior
and in detecting anomalies, whatever is the generative model chosen.

For what concerns the performance of the policy iteration and value iteration algorithms, it is inter-
esting to notice that in all the experiments we have 6 iterations for policy iteration, in which the policy
evaluation step takes around 8 iterations each time, and 8 iterations for value iteration. However, stating
that both give the same results, the value iteration algorithm is faster, thanks to the truncated policy
evaluation.

4.3.3. Towards an unsupervised setting

Another type of experiment that we can try to perform moves the report towards a more unsupervised
setting. The assumption of having a clean temporal sequence can be limiting sometimes: for this
reason, now we simply suppose to have a temporal sequence, not free from anomalies. We want
to exploit the fact that, by definition, an anomaly is something rare, that does not happen often: we
can define as anomalous those couples of states and actions that appear a number of times less or
equal than a certain fixed threshold. Since we are detecting anomalies on edges, what we mark as
anomalous is the edge that is added/removed that leads to the anomalous state. For this reason,
what results anomalous is performing a certain action on a certain state that leads to the anomalous
snapshot: now we have to consider the possible combinations between all the states and all the actions.

Recalling that the policies involved in problem are stochastic, we can define the threshold mentioned
before in terms of probability: for each state, those actions that have a probability of occurring that is
smaller or equal than the threshold are marked as anomalous actions. Since the policy is involved in
the computation of the value function, this concept is naturally present in the non-binary ranking score
defined in 3.2.2. This experiment may result more interesting than the previous one, since now the
anomalies can be found directly in the probabilities computed by the stochastic policy.

In order to carry this type of experiment, we need longer sequences than before: according to the
length of the sequence and to the total possible number of states we will fix a different threshold. The
procedure to generate the sequence is the same as before: we choose one generative model, fixing
all the parameters, create the sequence according to the model chosen, and then train the agent. This
time it is not necessary to create testing couples, since the anomalies will be extrapolated directly from
the policy learned by the agent.

Differently than before, we use graphs with 4 nodes, and sequences of length 2000, in order to reach
a compromise between length of the sequence and speed of computation. Since the number of nodes is
4 now, we restrict our experiments to the Erdős–Rényi model, since the Stochastic Block Model requires
at least five nodes to function properly. We need to remember that in this application the total possible
combinations of states and actions is equal to |𝑆| · |𝐴| = 64 · 13 = 832. We will use only value iteration
to train the agent in order to speed up the experiments. The threshold that we set is state-dependent:
for each state 𝑠 we say that performing action 𝑎 in 𝑠 is anomalous if the probability 𝜋(𝑎|𝑠) according to
the optimal policy 𝜋 is less or equal than 	

�𝑠 , where #𝑠 is the number of time that state 𝑠 appears in
the sequence. It means that the couple state-action is considered anomalous if it appears one time in
the sequence. Also in this experiment we need to be careful in choosing the threshold according to the
length of the sequence examined. In this case we do not have to clean the optimal policy, we simply
have to add the condition that the agent marks as anomalous those actions that have a probability of
occurring smaller or equal than the threshold chosen. We now report the results of the performed tests:

As expected, the results are optimal: the agent detects all the anomalies.
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#Sequence #Anomalies - real #Anomalies - detected

1 27 27

2 22 22

3 23 23

4 17 17

5 16 16

6 28 28

7 33 33

8 16 16

9 21 21

10 22 22

Table 4.1: Performance of the second experiment.
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5 Conclusions and Future Directions

The method presented in the report is just a small step in what could become a bigger work. The aim
of this chapter is to give a general overview of the algorithm formalized and its results, proposing the
possible developments and improvements. This project has the aim to realize a detector on temporal
graphs that is flexible and capable of generalization, able to detect anomalies not only in the case of
presence of an unexpected elements but also in terms of absence of an attended element. Considering
the growing attention towards dynamic nets and anomaly detection, and the multitude of useful real-
world applications, we think that this work fits well in the current scientific research panorama.

5.1. Final considerations

We now give a complete overview of the method developed in the report, taking into account the results
of the practical experiments and the problems encountered. We are able to look at the development of
the algorithm in its completeness: we have started from the conceptual background of anomaly detec-
tion in temporal graphs and of reinforcement learning, proceeding to the theoretical formalization of the
problem, up to the practical realization of the method. All these elements allow a full comprehension of
the work, that we will recap and comment in the following paragraphs.

5.1.1. Report summary

As the title itself of the report says, the main elements involved in this work are three: anomaly detection,
temporal graphs and reinforcement learning techniques. We have briefly presented these three macro-
arguments in the first chapter, trying to report the fundamental concepts and latest developments. The
second chapter represents the first step towards the realization of the method, because it is dedicated
to its formalization. We have defined what are the characteristics of our input temporal graph: the se-
quence must be without anomalies, modelled in a way that between each couple of consecutive time
steps only one action is performed. Then, another fundamental step is the Markov Decision Process
setting: we have explained how to transform the input sequence into the tuple (𝑆,𝐴, 𝑝,𝑅). The last ele-
ment that requires a formal definition is the anomaly itself: we have stated what we intend by anomaly,
that is the situation in which the trained agents expects certain situations to happen but actually they
do not. The anomalies require also a function score, that is a way to measure their gravity: we have
proposed two different solutions, the binary one and the non-binary one, in which the value function is
involved. The use of the value function allows to take into account the fact that the policy is stochas-
tic, that in some states there may be more than one normal action to perform, with a probability that
depends on how many times the couple state-action is encountered in the clean temporal sequence.

Once that all these elements have been formalized, we have applied dynamic programming tech-
niques, first just theoretically, and then in the third chapter through a practical implementation. We have
carried two different types of experiments: the first one supposes the knowledge of a clean temporal
sequence of a certain adequate length, from which extrapolate the normal behavior of the graph. As
expected, being in a supervised and small world, the performance of the method is very precise and
accurate, both in forecasting the normal behavior and in detecting anomalies.

The second experiment tries to go beyond the supposition that there is a clean temporal sequence,

Territori Aperti
45



because in practice it is not always satisfiable. We exploit the fact that by definition an anomaly is
something rare, that doesn’t occur often. What we need is a long sequence of the temporal graph:
fixing a certain appropriate threshold, we mark as anomalous those couples of states and actions that
appear in a number less or equal than the threshold. Clearly, being the anomaly on arcs, what we mark
as anomalous is the addition/removal of the arc that leads to the anomalous state.

In conclusion, we can list the main contributions of the report:

∙ the formalization of the model for the first reinforcement learning approach to detect anomalies in
temporal graphs;

∙ the definition of a procedure to generate sequences of temporal graphs starting from a graph
generative model;

∙ the implementation of the algorithm;

∙ the experimental protocol to test the performance of the method;

∙ the extension of the proposed approach towards an unsupervised setting.

We will talk about all the possible developments in the following section.

5.1.2. Results and limits

The experiments made in chapter 4 have allowed us to understand the performance of the method: we
now provide an analysis of the results obtained.

In the first type of experiment we suppose to have a clean temporal sequence, from which the agent
can learn the normal behavior. The testing couples are extracted from this sequence: some of them are
modified, in order to represent the anomalies, others are untouched. As explained, in the cases in which
the setting is supervised and small, the performance is expected to be optimal, as it is in this case. We
have very high levels of accuracy, true positive rate and true negative rate, both computed on each
single instance of the experiment and in the aggregated case. The single results of the experiments
are very similar one another in terms of the confusion matrix: this is reflected in the very low value of
standard deviation. Also in terms of number of iterations, in all the cases to reach the optimal policy and
value function were necessary 6 iterations of policy iterations and 8 of value iteration, a quite reasonable
number of repetitions.

Since the performances are so high, we can say to have built a detector that is very accurate in
predicting the normal behavior and in finding anomalies, but we need to understand which are the
underlying assumptions that led us to this results. First of all we have supposed to have a clean
temporal sequence of the graph: this is often not possible in practice. Usually, in the real world we can
get patterns of what is considered normal and what is not, and through these patterns it is possible to
extrapolate the normal behavior. Anyway, also this condition is not always satisfied. Another aspect
that can be viewed as a limit is the computational one: using dynamic programming techniques implies
restricting the application on quite small graphs. We have already seen that the number of states grows
exponentially with respect to the number of nodes, meaning that for big graphs it is more suitable to use
approximate solution methods. This exact model is very heavy for what concerns memory and time.

The second experiment is based on a different assumption: we suppose to have a very long sequence
(surely longer than the total number of combinations between states and actions), that does not have to
be free of anomalies. Also in this case the detector learns the behavior from the sequence, but recalling
that an anomaly is by definition something rare, we fix a threshold and mark as anomalous all those
couples of states and actions that appear a number of times smaller or equal than the threshold. In this
case, we can apply the threshold directly on the probabilities of occurrence of the actions, that come
out from the stochastic policy.
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The results of the experiment appear to be optimal, since the detector manages to find all the anoma-
lies present. This kind of results was expected: by definition, we have set that in the optimal policy the
probability of performing each action corresponds to the number of times the action is performed in the
state over the total number of times the state appears in the sequence.

This method can be useful when having a temporal sequence that is not clean: the important thing
is to choose the threshold carefully, because it depends strongly on the length of the sequence. The
principal limit is that, since the sequence is longer than before, the algorithm results heavier computa-
tionally, both in terms of time and space.

The main drawback of the setting of the second experiment is that we rely strongly on the definition of
anomalies, that is on the fact that an anomaly is something rare: in practice, it is not always this simple.

5.2. Possible developments

In this work we have considered the most basic case possible, that is the one of small undirected tem-
poral graphs, of which we know a sequence that describes the behavior without anomalies. Moreover,
since it is a first approach of the anomaly detection problem in temporal graphs with reinforcement
learning techniques, we have decided to apply dynamic programming methods. As mentioned several
times in the report, this is just a first step towards the realization of better and more flexible solutions:
the possible developments are many.

5.2.1. Small temporal graphs

One possible path to follow is keep working on small temporal graphs, that is when the state and
action spaces are small enough to be represented as arrays or tables. Besides dynamic programming
algorithms, in section 2.3.2.1 we have introduced also Monte Carlo methods and temporal-difference
learning. Both these methods could result more useful in some real-world applications, since they both
do not require a model of the environment.

Monte Carlo methods learn value function and optimal policies from experience in the form of sample
episodes. The tasks need to be episodic to assure that well-defined returns are available, because the
methods are ways of solving the reinforcement learning problem based on averaging sample returns.
Due to the sample setting, it is not possible to apply them in all the cases, and when it is there is the
necessity to formulate the problem in a different way. What is required is only experience, in the form
of sequences of state, actions and rewards from actual or simulated interaction with the environment.
In our case it means that we still need the agent to interact with an environment that is clear, without
anomalies. The ideas are the same already exposed for dynamic programming, but extended to the
Monte Carlo case in which only sample experience is available.

We distinguish two types of approaches: the on-policy one and the off-policy one. This differentiation
comes from the dilemma that all learning control methods encounter: they seek to learn the optimal
behavior, but they need to behave non-optimally in order to explore all the actions. The on-policy
approach, that is the one we have already used in DP, learns the action-values for a near-optimal policy
that still explores. In the off-policy learning instead two policies are used: one that is learned and that
becomes optimal (the target policy), and another that is used to generate the behavior (behavior policy).
Off-policy learning is more complex and slower to converge, but it is more powerful and general.

Monte Carlo methods represent a step forward with respect to dynamic programming because we can
learn directly from experience (simulated or real): in DP all the probabilities must be computed before
the algorithms can be applied, and those computations are often complex and error-prone. Differently,
generating the samples required by Monte Carlo methods is much easier. One limitation is surely the
fact that the tasks need to be episodic, which is not always fully appropriate for our particular application
temporal graphs.

Combining Monte Carlo ideas and dynamic programming ideas we get to temporal-difference learn-
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ing, a central and novel aspect of reinforcement learning. In fact, these methods sample from the
environment, like Monte Carlo methods, and perform updates based on current estimates, like dynamic
programming methods. While Monte Carlo methods only adjust their estimates once the final outcome
is known, TD methods adjust predictions to match later, more accurate, predictions about the future
before the final outcome is known: this is a form of bootstrapping. Temporal-difference learning has
an advantage over dynamic programming because it is not required the knowledge of the dynamics of
the environment; the advantage over Monte Carlo methods is that they are naturally implemented in an
online incremental way, still assuring convergence.

The methods presented represent possible developments of our algorithm, but still we need a certain
knowledge about the normal behavior of the environment and the condition that the graph is small in
dimension. This second constraint will be overcome in the following subsection, in order to have a wider
range of real-world applications for the anomaly detection problem in temporal graphs.

5.2.2. Big temporal graphs

One important development in this project is being able to deal with big temporal graphs: in this way
it is possible to treat most of the real-world cases, where the state space is combinatorial and huge.
We have already seen how big the state space can become in relation to the the cardinality of the
vertex set: |𝑆| = 2

𝑛�𝑛−	�

 , with 𝑛 number of nodes of the undirected graph. The situation is even more

complex if the graph is direct, in fact we have |𝑆| = 2𝑛�𝑛−	�, with 𝑛 number of nodes. In order to
treat this case we need to use approximate solution methods, already mentioned in 2.3.2.2, that can
be considered an extension of tabular methods. The aim is to find a good approximate solution using
limited computational time and data: in fact, it is impossible to encounter all the numerous states, and to
make relevant decisions, it is necessary to generalize from previous encounters with different states that
are similar to current one. The key is to combine reinforcement learning methods with generalization
methods: it means trying to build an approximation of a given function (for example the value function),
taking examples from it and using them to generalize the behavior. This type of setting is particularly
useful when it is possible to find patterns in the normal behavior or in the structure of the anomalies, so
that when similar situations are presented it is more natural to think that the outcomes are the same.

There are several methods that we have introduced in 2.3.2.2: the one of on-policy training, in which
the policy is given and only its value function is approximated; the control case, in which an approxi-
mation to the optimal policy is found; the off-policy learning with function approximation and the policy
gradient methods, which approximate the optimal policy directly without an approximate value func-
tion. The strategy would be to try to formalize and implement all these methods and evaluating their
performances, in order to understand which one performs better and in which cases.

In addition, in order to get a more complete detector, some features could be added. For example, it
would be interesting to consider a temporal feature: it could happen, in fact, that a certain event needs to
be considered anomalous in some situations and normal in others. For example, we can think about an
e-commerce site: when a new product is launched, it is expected that the number of purchases or visits
to the site increase in that period; in normal situations, however, it could cause suspects. Consequently,
the agent should be aware of the temporal moment in which it is when detecting anomalies. Once that
an anomaly is detected, it is important to understand also where it comes from and the reasons that
have caused it. We can think of a DOS cyber-attack, in which a device is targeted and put out of use
because a lot of devices try to connect with it (in a graph it means that there are a lot of arcs coming
from different nodes that are all directed to a single node). If the agent would be able to detect not only
the anomaly but also its meaning, it would be easier and faster to remedy it. The last improvement
we could make is about the formalization of the setting of the problem: instead considering each time
step as an action, we could sample the graph sequence in actual temporal steps of the duration of a
certain number of seconds, in order to have a more complete view of the graph. In this case we would
not be detecting specific anomalous edges but anomalous snapshots, being able to eliminate also the
hypothesis that the set of nodes is fixed.
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One thing to notice is that we still are assuming that we have some knowledge about what is the
normal behavior: in real-world applications it is not always true. The biggest step forward to make
is to eliminate this supposition. Clearly this development requires a well defined formalization and a
massive study, but just to give some hints at which could be the possibilities we could say that one way
to guide the agent in the training is to give rewards based on the level of change between one graph
and the other. This means that when passing from a graph to another if the structure of the two graphs
is too different the reward will be low, meaning that it is improbable to switch from one snapshot to
the other. This time the difficulty lies in understanding what we mean by ’different snapshots’, that is
defining a function that computes the degree of diversity between two graphs: this function is application
dependent and needs to be thought carefully.
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