Noname manuscript No.
(will be inserted by the editor)

Exploring Performance Assurance Practices and
Challenges in Agile Software Development:
An Ethnographic Study

Luca Traini

Received: date / Accepted: date

Abstract Background: Agile principles play a pivotal role in modern soft-
ware development. Unfortunately, the assessment of non-functional software
properties, such as performance, can be challenging in Agile Software De-
velopment (ASD). Agile mentality tends to favor functional development over
non-functional quality assurance. Additionally, frequent code changes and soft-
ware releases make impractical the use of classical performance assurance ap-
proaches.

Objective: This paper investigates the current practices, problems and chal-
lenges of performance assurance in a real context of ASD. To the best of our
knowledge, this is the first empirical study that specifically investigate perfor-
mance assurance in ASD daily work.

Method: Through a 6-months industry collaboration with a large software or-
ganization that adopts ASD, we investigated practical and management prob-
lems in handling performance assurance activities. The research was conducted
in line with ethnographic research, which guided towards building knowledge
from participatory observations, unstructured interviews and reviews of doc-
umentations.

Results: The study shows that the case organization still relies on a waterfall-
like approach for performance assurance. Such an approach showed to be in-
adequate for ASD, thereby leading to a sub-optimal management of perfor-
mance assessment activities. We distilled three key challenges when trying to
improve the performance assurance process: (i) managing performance assess-
ment activities, (i) continuous performance assessment and (iii) defining the
performance assessment effort.

Conclusions: The assessment of software performance in the context of ASD is
still far from being flawless. The lack of guidelines and well-established prac-
tices induces the adoption of approaches that can be obsolete and inadequate

L. Traini
University of L’Aquila, Italy
E-mail: luca.traini@Qunivaq.it

2 Luca Traini

for ASD. Further research is needed to improve the performance management
in this context, and to enable effective continuous performance assessment.

Keywords Software Performance Engineering - Ethnographic studies - Agile
Software Development

1 Introduction

In the last decades, the principles behind the Agile Manifesto (Beck et al.,
2001) have profoundly changed the way software is produced. Software devel-
opment methodologies inspired by these principles (e.g., Scrum and Kanban)
are today widely adopted!, and are gradually replacing the traditional water-
fall approach. Indeed, Agile Software Development (ASD) better meets the
dynamic nature of today’s software development business and the significant
pressure to deliver fast to the market (Rubin, 2012).

However, although ASD and DevOps have successfully enabled companies
to address the current fast-to-market trend, their cost in terms of software
quality is still disputable (Rubin, 2012). In the past years, researchers criticized
ASD for mainly focusing on functional aspects and neglecting non-functional
quality attributes (Ramesh et al., 2010; Inayat et al., 2015), and highlighted
a lack of well-defined practices to effectively manage non-functional quality
assurance (Alsaqaf et al., 2017, 2019; Behutiye et al., 2020a,b; Kasauli et al.,
2021).

Short iteration cycles and time constraints minimize the focus on address-
ing non-functional requirements (Behutiye et al., 2020a; Alsaqaf et al., 2019),
and hamper the adoption of traditional quality assurance approaches. Soft-
ware performance assurance, for example, can be especially challenging in
these contexts (Ramesh et al., 2010; Woodside et al., 2007).

In the past years, studies has been conducted to investigate challenges
in non-functional quality assurance in the ASD context (Alsaqgaf et al., 2017,
2019; Behutiye et al., 2020a,b). However, while these studies investigate non-
functional attributes in general, there is still little knowledge on practices and
challenges to assess specific non-functional quality attributes, such as perfor-
marnce.

Poor software performance impacts user engagement and satisfaction (Brutlag,
2009), wastes computational resources, and degrade system response time
and throughput. Since the early days of ASD, researchers expressed con-
cerns about how to inject performance assurance activities in Agile iterations
(Woodside et al., 2007). Indeed, due to their time-consuming nature, common
performance assurance practices (e.g., load testing (Jiang and Hassan, 2015))
are often unsuitable for ASD. Moreover, mentality and principles behind Agile
often contradict common performance engineering conjectures. For example,
Fowler and Beck, namely two signatories of the Agile Manifesto (Beck et al.,
2001), suggest to consider software performance only after making the software

1 15th State of Agile Survey. https://bit.1ly/3azEj5r

Exploring Performance Assurance in Agile Software Development 3

clear and maintainable (Auer and Beck, 1996; Fowler, 2002), thereby concep-
tually reflecting the famous quote from Knuth that “Premature optimization
is the root of all evil in programming” (Knuth, 2007). On the other hand,
classical performance engineering literature argues that the “fiz-it-late” atti-
tude is one of the causes of major performance failures (Smith and Williams,
2001). To best of our knowledge, the only attempt to tackle this problem was
made by Chih-Wei Ho et al. (2006), which proposed an evolutionary model for
performance requirements specifications and corresponding validation testing
that can be integrated into ASD.

However, after two decades of ASD, there is still a lack of empirical knowl-
edge on performance assurance in this context. Although several studies have
broadly investigated non-functional quality assurance in ASD, there is still
little specific knowledge on the practices and challenges of performance as-
surance in ASD. Moreover, prior work present results based on data collected
through interviews and surveys, but it does not examine how agile teams tackle
non-functional quality assurance in their daily work.

In order to contribute to fill this gap, in this paper we present an empirical
study investigating performance assessment practice and challenges in ASD
daily work. The research was conducted by means of a 6-months ethnographic
study (Sharp et al., 2016) in a Research & Development division of a large
company?, which uses the Scrum framework (Rubin, 2012) to support their
agile practices. During the first three months, we gained understanding on
the performance assurance practices and problems through the observation of
daily work and meeting sessions, individual interviews, participation in demo
sessions, process workshops and review of documentation. In the last three
months, we have actively participated to the improvement of the performance
assurance process. Ethnography focus on daily activities helped to capture a
holistic view of the performance assurance process, and to distill promising
research directions related to three broad challenges: managing performance
assessment activities, continuous performance assessment and determining the
performance assessment effort.

The rest of the article is structured as follows. Section 2 introduces the
study context, i.e., the case organization, and Section 3 outlines the study
design. Section 4 describes the observed practices for performance assurance,
and the problems that arose from the adoption of such practices. In Section 5
we present proposals that were discussed to improve the performance assur-
ance process. Section 6 outlines three key challenges for the improvement of
performance assurance in ASD along with interesting research directions. Sec-
tion 7 discusses the consistency of our findings with those of previous studies
reported in the literature. Section 8 describes threats to validity. Section 9
presents related work, and Section 10 concludes this paper.

2 Due to the sensitivity of the results presented here-in, the organization chose to stay

incognito. Therefore, in this paper, we use fictitious names of the company and the product.

4 Luca Traini

2 Study context

This study was carried out in a Research & Development (R&D) division of
ECorp 2, based in Italy, where more than 120 people work on building MES-
Platform 2, i.e., a software platform for the manufacturing industry domain.
MESPlatform provides foundation for building Manufacturing Execution Sys-
tems (Meyer, 2009)(MES), which allow industries to digitalize their manufac-
turing chains by providing a real-time software layer to track and document the
transformation of raw materials to finished goods. The software development
division used the Scrum framework to support their agile practices (Rubin,
2012). In the following subsections we first provide a general description of
the Scrum framework, then we describe how Scrum is implemented in the case
company (number and size of agile teams, sprint length, etc.).

2.1 The Scrum framework

Scrum is a widely popular agile framework®, which consists of a set of roles,
events, artifacts, and rules that bind them together (Rubin, 2012). The three
key roles in Scrum are the product owner, the Scrum master and the devel-
oper. The product owner is the central role in requirements management in
Scrum, as he is solely responsible for prioritizing and managing the require-
ments (Heikkila et al., 2013) The Scrum master is accountable for establishing
Scrum in the organization, and helping professionals to understand the theory
and practice behind Scrum. Developers are, instead, accountable for turning
requirements into actual working software. In Scrum, software development
happens within fixed length events called sprints. Each one these events begin
with a planning meeting to laying out the work to be performed for the sprint.
This plan is created through the collaborative effort of an entire agile team
(usually composed by some developers, a product owner and a Scrum master).
In order to inspect progress within the sprint, each agile team performs short
daily stand-up meetings to monitor and adjust the planned work.

The key requirements management tool in Scrum is the product backlog
(Heikkila et al., 2013). The product backlog lists all features, functions, re-
quirements, enhancements, and fixes that constitute the changes to be made
to the product in future releases. Whenever a backlog item is added to the
product backlog, the development team together with the product owner es-
timates the size of the item. Based on the size and importance of the new
item, the backlog item is then prioritized into the product backlog. The prod-
uct backlog usually includes different types on artifacts . Examples of backlog
items include user stories and epics. The former represents the smallest unit of
work in the Scrum framework. It is an informal, general explanation of a soft-
ware feature written from the perspective of the end user. The latter, instead,
represents a specific type of user story, which is too big to fit in less than one
sprint. Epics are useful as placeholders for large requirements, and are usually

3 15th State of Agile Survey. https://bit.1ly/3azEj5r

Exploring Performance Assurance in Agile Software Development 5

progressively refined into a set of smaller user stories at the appropriate time
(Rubin, 2012).

2.2 Scrum at ECorp

The software development division was composed by 13 agile teams. Each team
had between 8 and 10 developers, one of whom played the additional role of
Scrum Master. Three additional teams were responsible of non-functional soft-
ware quality aspects: a UX team, a security team and an enterprise testing
team. The latter was in charge of performing highly complex tests to assess im-
portant non-functional quality attributes, such as reliability, robustness and
performance. One head of development, three product owners, one product
manager, three software architects, one release manager, one quality assur-
ance specialist and two Agile coaches were other professionals involved in the
software development process. Seven agile teams were distributed in other
countries, i.e. India and Romania, while others agile teams and professionals
were co-located in the same building in Italy. Development followed 3-week
sprints, or iterations, and the teams used Scrum ceremonies, e.g., sprint plan-
ning meetings, stand-up meetings, demo sessions and retrospectives. Software
release happened every 6 sprints (roughly every 4 months).

3 Study design

Previous studies on non-functional quality assurance in ASD are based on in-
terviews and questionnaires, but they do not examine how agile teams tackle
quality assurance in their daily work. This paper takes a different perspective:
it explores performance assurances practices and challenges in ASD daily work
by means of an ethnographic study (Sharp et al., 2016). The key strength of
ethnography that is overlooked by other research methods is the support it
provides to explicate the rationale beyond practice from an insider’s point
of view to capture both what practitioners do in a context, and why. Ethno-
graphic studies often focus on the ordinary detail of life (Anderson, 1997). The
importance of attending to the ordinary details of life lies in the role these de-
tails play in relation to how the everyday tasks are addressed (Sharp et al.,
2016). The result of an ethnography is often more comprehensive and de-
tailed when compared to results obtained with other research methods. This
is because it aims to communicate the broad picture. This comprehensive and
detailed set of data is often referred to as a “thick description” (Geertz, 1988)
of the community and culture studied.

In order to formalize the study, we used the five ethnographic dimensions,
as proposed by Sharp et al. (2016):

1. observation type (participant or not) was mixed. In the first phase of the
study non-participant observation was used, with the researcher asking
questions and observing individuals performing their tasks; In the second

Luca Traini

phase of the study, the researcher actively participated to meetings with
the goal of improving the process;
2. Duration of field study was 6 months;
3. Space and location where the observation happened was the R&D labs of
ECorp where MESPlatform was developed (Italy);

4. No specific theoretical underpinnings were used;

5. The ethnographer intent was to understand the current process for perfor-
mance assurance and the challenges in improving this process;

Pre-Assessment

The researcher gained a broad
understanding of the
organization, the software
product, the software
architecture, and the software
development process

(first week)

Assessment

The researcher performed a
detailed investigation of the
performance assurance practice.
The investigation included:

+ management aspects
« documentation approaches

« testing and debugging practice
* problems and challenges
(first 3 months)

Improvement

The researcher investigated the
main challenges for the
improvement of performance
assurance in ASD.

The investigation took place
during an initiative setted up by
the organization for improving the
performance assessment
process.

(last 3 months)

Data collection:
6 meetings, 2 workshops

Data collection: Data collection:
4 meetings 3 unstructured interviews, 2 meetings,
2-months of daily work observation,
Partecipants: documentation review
Head of Development, 1 Product Owner, 1
Software Architect, 1 Scrum master

Partecipants:
Head of Development, Quality assurance
specialist, 3 Product owners , 3 Software
architects, Agile coach, External consultant,
1 Scrum master, 1 member of the enterprise
testing team.

Partecipants:
Head of Development, Head of Enterprise
testing team, Quality assurance specialist,
1 Product Owner, 1 Software Architect,

1 Scrum master, 7 software
developers/testers, Chogori Team

Fig. 1 Overview of the study. The upper part of the figure briefly describes the three main
phases of the study. The lower part reports for each phase the activities performed to collect
data and professionals involved these activities. A more detailed description of the activities
performed during the study can be found in Table 1 (Pre-Assessment), Table 2 (Assessment)
and Table 3 (Improvement).

Fig. 1 provides an overview of the three main phases of the study: Pre-
Assessment, Assessment and Improvement. The study started with four in-
dividual meetings to gain an overview of the software development process,
the product and the software architecture (Pre-Assessment). These meetings
involved the head of software development, a product owner, a scrum master
and a software architect (see Table 1 for further details).

After these preliminary meetings, the investigation on performance assur-
ance practices started (Assessment). The first unstructured interview was con-
ducted with the head of development to gain an overview of the current process
for performance assurance and the parts involved in this process (e.g., teams
and professionals). After this interview, the researcher agreed with the head of
development to spend two months of daily work observations within an agile
team in charge of performance testing activities. The researcher observed the
team in their daily work activities, such as scrum ceremonies (e.g, stand-up
meeting, sprint plan and retrospectives) and technical activities (e.g., perfor-
mance testing and debugging). Other two unstructured interview sessions were
carried out with the quality assurance specialist to gain a detailed picture of

Exploring Performance Assurance in Agile Software Development 7

the performance assurance process. Additionally, the researcher participated
to all the meetings that were related to performance assurance aspects. These
meetings involved agile teams, product owners, software architects, quality
assurance specialists and the enterprise testing teams (see Table 2 for fur-
ther details). The data was collected through different media like handwritten
notes, photographs and digital copies of documents and artifacts.

After the first three months, the head of development proposed to start
an investigation to identify opportunities for improvement in the performance
assurance process (Improvement). To this aim, a series of meetings involving
product owners, software architects, quality assurance specialist, head of de-
velopment, a scrum master, an external consultant and the enterprise testing
team were held (see Table 3 for further details). The researcher actively par-
ticipated to these meetings, thereby influencing the outcome of the research.

After these meetings, two activities were identified to improve the perfor-
mance assurance process. The researcher actively participated to both these
activities, which mainly involved meetings with product owners and software
architects.

In order to complement data gathered from interviews, meetings and ob-
servations, the researcher also analyzed process and software documentation
in Confluence* and Azure DevOps Server®(ADS), which supported the R&D
division in holding all the software development information (e.g., product
backlog, test plans and wikis).

The collected data were then analyzed to derive (i) the practices adopted
by the organization for performance assessment along with their problems,
and (ii) the challenges in improving the performance assessment process.

[Partecipants [Type | Description
Head of Development Meeting Overview of the organization structure,
software product (and domain) and
software development process.
Product Owner Meeting Overview of to the software product.
Scrum Master Meeting Overview the Scrum framework.
Software Architect Meeting Overview to the software architecture.

Table 1 Data collection activities in the Pre-Assessment phase.

4 Atlassian Confluence https://www.atlassian.com/software/confluence
5 Microsoft Azure DevOps Server, https://azure.microsoft.com/it-it/services/devops/server/

Luca Traini

[Partecipants Type | Description
Head of Development Unstructured Overview of the performance assurance
interview process (c.g., stakeholders and test

frequency).

Chogori Team

Daily work
observation

2-months of daily work observations.
The observations involved all the
activities performed by the Chogori
team: including scrum ceremonies (e.g.,
sprint planning, sprint retrospectives,
daily standup meetings), technical
activities (e.g., performance testing and
debugging) and meetings related to
performance assessment.

Quality Assurance

Unstructured

Broad description of the performance

Specialist interview assurance process: stakeholders involved,
how information related to performance
assurance flows within the organization.

Quality Assurance Unstructured Detailed description of the performance

Specialist

interview

assurance process: documentation
approaches, PR ownership and
prioritazion mechanism.

Toad of Bnterprise Testing Meecting Alignement on the NFR validation

Team, 1 Product owner, process.

Quality Assurance

Specialist, 1 Scrum

Master, 1 Software

Architect

7 Software Meeting Periodic meeting of the community of

developers/testers practice for quality assurance.

- Documentation| Review of both process and technical
Review documentation, including 92 PRs, test

plans (24 test cases and 6 user stories),
wikis and others product backlog items.

Table 2

Data collection activities in the Assessment phase.

[Partecipants Type [Description

Head of Development, Meoting Broad discussion on the main problems

1 Product owner, Quality affecting the performance assurance

Assurance specialist process, and promising ideas for
improvement.

Head of Development, Meeting Discussion and analysis of the main

3 Product owners, Quality problems of the performance assurance

Assurance specialist, process.

1 Scrum Master

Agile Coach Meeting Discussion of the main problems
affecting the management of
performance assessment activities.

Quality assurance Meoting Discussion on how to improve the

specialist, External performance assurance process.

consultant

Quality assurance Meeting Discussion on the lack of alignment

specialist, 1 member of the between PR priority and performance

enterprise testing team test execution.

3 Product owners, Head of Meeting Discussion and definition of the next

Development, 1 Quality steps for the improvement of

Assurance specialist, performance assurance.

1 Scrum Master

3 Product owners, Workshop Refinement of the PR list (87 PRs kept

3 Software architects, and 5 PRs discarded).

1 Scrum master

2 Product owners, ‘Workshop Selection of an automated performance

3 Software architects, testing suite (12 PRs selected, involving

1 Scrum master 7 web test PRs and 5 load tests PRs).

Table 3 Data collection activities in the Improvement phase.

4 Performance assessment practices

The observed performance assessment activities still followed a waterfall-like
approach. In this section, we first describe the performance assessment process,
as it was observed in the case organization, and then we report problems that
arose from the adoption of such process.

Exploring Performance Assurance in Agile Software Development 9

4.1 Description

In the following, we outline the main components of the performance assess-
ment process. Specifically we describe (i) the Performance Requirements (PR)
MESPlatform was subject to, (ii) the process used to manage performance
assessment activities, (iii) the documentation approach and (iv) the PR veri-
fication process.

4.1.1 Performance Requirements

MESPlatform was subject to 92 PRs, where each PR involved a set of testing
scenarios that were used to evaluate the performance of a specific system oper-
ation. Each testing scenario was usually associated to a target (e.g., minimal
expected throughput, maximal expected response time), which was defined
according to customer agreements, or based on the system knowledge of prod-
uct owners and software architects. In some PRs no targets were specified.
These PRs were called benchmarks and were used to assess performance of
new functionalities or to compare the performance of particular system oper-
ations across different software versions. Each PR described the system oper-
ation under test and the configurations required to each testing scenario, such
as virtual machine specifications (e.g., number of CPU cores, memory size),
database size (i.e, records stored in the database) and number of concurrent
users. Overall there were more than 300 testing scenarios across the 92 PRs.
Some of these tests required just few seconds of execution while others required
more than one day. PRs involved four different types of performance tests: Ul
tests, web tests, load tests and mixed tests. Performance Ul tests were used to
measure the time needed to execute a particular task in the MESPlatform Ul
by simulating real user interaction through Selenium 6. The advantage of these
tests was their representativeness of the true usage of the application, as the
web application is actually executed in a browser, thereby considering also Ul
rendering time in the response time measurement. Unfortunately, these tests
are usually demanding in terms of maintenance, as even a tiny Ul change may
corrupt them. According to a senior software tester, it was rare that Ul tests
were used without additional maintenance tasks from one release to another.
Performance web tests, instead, involved a series of HTTP requests that sim-
ulated a single user interaction. In this type of test, only server side response
time (or throughput) was measured, while the Ul rendering time was ignored.
Load tests (Jiang and Hassan, 2015) were used to simulate many users that in-
teract with the system at the same time. Load tests involved the simultaneous
execution of multiple web tests that simulate multiple users making multiple
simultaneous HTTP requests. Mixed performance tests, instead, were Ul tests
combined with load tests, which enabled response time measurements of Ul
user interactions on the system under load.

6 Selenium WebDriver, https://www.selenium.dev

10 Luca Traini

4.1.2 PRs management

New PRs were usually defined by individual product owners or software archi-
tects based on their system knowledge or according to customer needs. On the
other hand, the deprecation of a PR usually required acknowledgements among
multiple architects and product owners. Overall, performance assurance activ-
ities still followed a waterfall-like process, i.e. performance tests were executed
before each software release. At the best case, every PR was tested once before
each release, however, due to time and resources constraints, the exhaustively
assessment of PRs before release was usually impractical. As a matter of fact,
at the time of study, no more than 35% of PRs were addressed per release (see
Fig. 2).

100

80

0 .

Total 2.3 2.4 2.5 3.0
Release version

Fig. 2 PRs tested per releases. The first bar represents the total number of PRs, while the
others represent PRs tested in a particular release version.

In order to ensure the assessment of relevant PRs before releasing, the
company employed a priority mechanism, where each PR was prioritized with
a number ranging from 1 to 4, with 1 being the highest priority and 4 the low-
est. PR priorities were usually not stable across releases, since the development
activities performed within a release cycle may often change the relevance of
some PRs. According to the quality assurance specialist, priorities were usu-
ally updated before each release in a long one-day meeting involving software
architects and product owners.

Performance tests were usually performed by the enterprise testing team,
which chosen performance tests to execute according to priorities and time/resource
constraints. In some cases, product owners specifically asked mandatory as-
sessment of certain PRs. Some PRs were also assigned to a “special” agile

Exploring Performance Assurance in Agile Software Development 11

team, called ChogoRi, which performed complementary performance assur-
ance activities along with feature development and other operational tasks.

4.1.8 Documentation

PRs were documented through a custom artifact of ADS7, which was specifi-
cally created to document Non-Functional Requirements (NFR). The catalog
of PRs was accessible through ADS, and each PRs artifact contained an ID,
a title, a description and the software versions in which the NFR was tested.
The description contained the performance testing type (e.g., UI, load test),
the description of system operation(s) under test, and a set of testing sce-
narios along with their detailed descriptions (e.g., machine specs, number of
concurrent users). Supplementary information on PR was held in Confluence
wikis. The enterprise testing team used test plans in ADS to manage and doc-
ument the execution of performance tests, while the ChogoRi team adopted

user stories®. Both test plans and user stories contained a reference to the PR
1D.

4.1.4 PR verification

{ Undestanding)—D{ Planning)—D{ Test Execution

Performance
Debugging
Fig. 3 PR verification process.

Fig. 3 outlines the main phases of PR verification, as they were observed
in the ChogoRi team daily work. In the first phase, the team analyzed the PR
description to gain understanding on the required testing scenarios. Often, in
case of ambiguous PR description, architects or software developers helped
the team in this process. In the planning phase, the work needed for PR
verification was divided into tasks, such as environment configuration or test
development, and assigned to team members. In the third phase, performance
tests were executed while collecting application logs and performance indices

7 Test plans, Azure DevOps Service. https://bit.ly/3aRlmdv
8 User story, Agile Alliance. https://bit.1y/369HxtY

12 Luca Traini

(e.g., throughput, response time, CPU and memory utilizations). The opera-
tional data was then analyzed by the team to identify relevant anomalies and
to verify PRs targets. In the case of benchmark PR (i.e., no target specified),
performance test results were typically compared to a baseline, e.g., results
of the latest release tested. If results did not met targets or showed relevant
performance deviation compared to baseline, they were reported to architects
and/or product owners, which, after a careful evaluation, could confirm the
performance bug. Similarly to functional bugs, performance bugs were tracked
in ADS along with a level of severity”. The severity defines whether the per-
formance bug had to be immediately resolved or it could be addressed in later
development stages (according to priorities).

B Root cause B
{ Bug Assignment]—D{ Hypothesis]—D{ Test Hypothesis

f

Fig. 4 Performance debugging process.

Fig. 4 outlines the performance debugging process as observed in the
ChogoRi team. In order to assign the bug to the proper development team, the
system components that are affected by the bug had to be identified. To this
end, the ChogoRi team analyzed performance indices and/or log statements,
that are somehow related to the performance issue, to pinpoint the software
components that are affected by the performance bug. Often, the knowledge
on the system by the ChogoRi team might not be sufficient to perform this
task. Hence, in these cases, they were helped by software architects and de-
velopers. Once the affected components were identified, the bug was assigned
to the proper development team, which thoroughly study the bug symptoms
to identify the likely root cause. The root causing process usually involved
three steps: 1) making a root cause hypothesis, 2) changing the source code
according to the hypothesis and 3) validating the hypothesis by re-running
performance tests on the modified system snapshot. Often this process had to
be repeated several times in order to identify the real root cause. Once the root
cause has been determined, the development team actually resolves the bug,
and subsequently the performance testing team re-reruns testing scenarios to
verify the PR. If the PR was met, then the bug could be marked as “resolved”.

9 Azure DevOps Service, bug management. https://bit.1ly/3thSZgZ

Exploring Performance Assurance in Agile Software Development 13

4.2 Problems

In the following, we report the main problems that were observed within the
performance assurance process. We categorize these problems in two broad
categories: PR management and lack of early feedback.

4.2.1 PR management

After a thorough analysis of test plans, user stories and PRs, we noticed that
PR management was not working as expected. Although the number of PRs
continued to grow from one release to another, due to the new features added
to MESPlatform, most of them were often not verified. The cause of this
phenomenon was that, while adding a new PR was a relatively cheap process
for the organization (since it required the decision of single product owner
or architect), the deprecation of a PR required the agreement of multiple
product owners and architects. As a consequence, product owners kept adding
PRs but their deprecation rarely happened, and, from time to time, the PRs
list became unmanageable. Moreover, the process overhead introduced by this
high number of PRs was often not justified by their usefulness. For example,
we found that 35 PRs were never tested in the last 6 releases (see Fig. 5), i.e.,
since ~2 years.

35

30

No. PRs

-
(9]

10

0 —
0 1 2 3 4 6
No. releases tested

Fig. 5 Number of times PRs have been tested in the last 6 releases. The x label represents
the amount of releases tested, while the y label represents the number of PRs that have
been tested z times in the last 6 releases.

The increased number of PRs also impacted the prioritization mechanism
which was showing its vulnerability. Indeed, the analysis of the test plans
and user stories reported a lack of alignment between priorities and what was

14 Luca Traini

actually tested (see Fig. 6). For example, several PRs with priority 1 (i.e., the

50
I Not tested
[Tested

40

) H l I
0
1 2 3 4

Priority

Fig. 6 Number of PRs tested (and not tested) in the latest release, grouped by priority.

highest) were not tested in the last release, while others with priority 4 (i.e.,
the lowest) were. Specifically, the PRs tested involved 7 out of 11 PRs with
priority 1, 2 out of 18 PRs with priority 2, 1 out of 19 PRs with priority 3, and 3
out of 44 PRs with priority 4. When the researcher asked the quality assurance
specialist why this happened, she replied that meetings for updating priorities
were not held in the last two releases, therefore priorities might be obsolete.
Indeed, product owners and software architects were usually overloaded with
many relevant tasks in the organization, hence keeping them busy for a whole
work day to update NFRs priorities was unfeasible in the last releases.

Nevertheless, according to the quality assurance specialist, at that time,
the criteria used to select PRs for a particular release was not clear. We asked
clarification to the enterprise team and product owners, and it turned out
that several PRs were autonomously chosen by the enterprise testing team,
apparently, according to their practical convenience. The lack of well estab-
lished practices to manage PRs led to a suboptimal selection of performance
tests, which compromised the performance assessment of MESPlatform. As a
matter of fact, at the time of the study, several informants in the organization
reported that other R&D divisions in ECorp that used MESPlatform to build
other products, were experiencing severe performance issues. Moreover, while
analyzing the product backlog, we found that an entire epic was devoted to
improving MESPlatform performance, hence suggesting that a massive rework
was planned. Note that epic is the larger unit of work in Scrum, and it is used
as a placeholder that represents work that cannot be finished within a sprint
(i.e., 3 weeks).

Exploring Performance Assurance in Agile Software Development 15

4.2.2 Lack of early feedback

While functional tests were continuously executed, both in the continuous inte-
gration pipeline and in nightly builds, performance tests were executed at most
once per release. Nevertheless, from one release to another, thousands of code
changes were performed that might potentially affect software performance.
This lack of performance feedback during development might hide potentially
harmful performance issues, which could eventually lead to expensive mainte-
nance activities. Moreover, a higher number of code changes usually implies
a higher number of potential causes of performance regression, which makes
harder analysis and problem resolution. In order to provide a better under-
standing of this problem, in the following we report the challenges observed
by the researcher, in the ChogoRi team, during a complex PR verification.

The PR was derived from a real world scenario of an MESPlatform cus-
tomer, and it involved a set of load testing scenarios. For each scenario, a target
was specified to define the minimal expected throughput for a specific system
operation. After setting up the environment (i.e., the virtual machine, the
MESPlatform instance and its databases) and launching performance tests,
the tester found that PR targets were not met. On the other hand, in the
previous release, the same PR was verified without reporting issues, which
implied that performance regression was introduced during the development
of last release. The analysis of performance indices and logs found that the
response time of the analyzed operation kept increasing during the test, and,
in the meantime, the CPU utilization temporarily drop to zero. The symp-
toms of the performance issue were then reported to software architects and
product owners, which, after a careful analysis, classified the problem as a crit-
ical bug that should have been immediately resolved. The bug was assigned
to a development team who had worked, during the last release development,
on the components apparently affected by the performance issue. Unfortu-
nately, these software components had been subject to several changes since
the previous release, thereby implying a potentially large set of potential root
causes. As a matter of fact, the truly identification of the root cause required
several attempts and about a week of work, in which the development team
performed experimental code changes to the system snapshot and the perfor-
mance testing team re-launched tests against the system snapshot to evaluate
its performance. An earlier performance feedback would have probably implied
less iterations to isolate the problem, due to a lower number of potential code
changes, thereby enabling a faster root cause detection.

The late detection of the bug also impacted the effort and the quality of de-
bugging. The performance bug was caused by a well known problem in .NET 10
asynchronous programming called “threadpool starvation” '!. The root cause
was the introduction of a synchronous call in the critical path of a system op-
eration. Unfortunately, after the introduction of the bug, several changes were

10 Microsoft .NET. https://bit.ly/2Muc3If
1 NET Core, ThreadPool Starvation. http://bit.1ly/30z¥nIl

16 Luca Traini

performed on the system that made difficult to fix the synchronous call. The
impact of the bug was partially hampered through a work-around!!, which
allowed the PR tests to pass. However, due to time-pressure and rework com-
plexity, the actual resolution of the bug was unfeasible. An earlier identification
of the problem would have probably enabled software developers to be more
aware of the potential impact of their design decision on software performance,
thereby avoiding potential technical debt.

5 An initiative to improve performance assessment

During the last three months of this empirical study, a series of workshops and
meetings were held with the goal of improving the performance assessment
process. Several proposals were discussed to tackle the problems faced by the
organization, some of them are briefly discussed in the following.

One proposal was to assign performance assessment activities directly to
development teams to enable early assessment of development activities as
soon as they are completed. The proposal was discarded due to various reasons.
For instance, according to the head of development, development teams were
often too busy to deal with performance testing activities. Moreover, according
to several informants, they often did not have the required technical knowledge
to reliably perform them. Furthermore, many PRs referred the whole system
architecture, hence they usually depended from the simultaneous development
activities of multiple teams.

Another problem discussed was the decreasing number of performance tests
executed over last releases (see Fig. 2). Following the example of other orga-
nizations (Alsaqaf et al., 2019), the researcher proposed to reserve part of the
sprint to non-functional assurance activities (such as software performance
assessment), in order to mitigate the increasing prevalence of functional activ-
ities over non-functional ones. Nevertheless, the proposal was not accepted by
the head of development and product owners.

The lack of continuous performance assessment was also faced. The head
of development proposed to automate PR execution to enable continuous per-
formance testing of PRs. A product owner and the ChogoRi scrum master
raised several practical concerns about this proposal. According to them, the
assessment of some PRs implied the configuration of complex environments,
which can be difficult to automate. Moreover, these tests often required days
for configuration (e.g., database population) and executions on multiple ded-
icated machines, which were often not available in the organization. The re-
searcher proposed to classify PRs based on their complexity, and to execute
lightweight and easily automatable tests more frequently (e.g., every night),
and complex tests with minor frequency. Similarly, the quality assurance spe-
cialist highlighted the need of identifying a subset of automated test that could
continuously provide performance feedback against software evolution.

Another point discussed was the role of the PR list in the organization. The
head of the development and the agile coach perceived the PR list as one of the

Exploring Performance Assurance in Agile Software Development 17

major source of troubles in the performance assessment process. According to
the quality assurance specialist, many PRs were probably outdated and related
to old versions of the product. During a meeting, the researcher showed that
35 over 92 PRs were never tested in the last 6 releases and many others were
only tested few times (see Fig. 5), thereby raising the concerns of the head of
development and product owners about the utility of some PRs. To deal with
this problem, a revision of the PR list was proposed as a potential first step.

After these meetings, the head of development decided to prioritize two
main activities for the improvement of the performance assessment process:
(i) the identification of a subset of automated performance tests and (ii) a
revision of the PR list.

In order to perform the first activity, a meeting was held involving all ar-
chitects and product owners to identify a subset PRs for automation. Four
main criteria were used to identify this subset: the relevance of system opera-
tion under test, the ease of automation, the time effort required to configure
and run tests, and the robustness of tests in terms of maintenance. At the end
of the process, 12 PRs that exercise architecturally relevant operations were
selected, involving 7 web test PRs and 5 load tests PRs. Ul and mixed tests
were discarded due to their poor robustness in terms of maintenance.

The second activity was performed in a meeting involving all product own-
ers and software architects. Architects were typically reluctant to remove PR,
since they aimed to carefully assess every aspect of the performance of the
system. However, many PRs were rarely tested due to time and resource con-
straints. During the process, architects were invited to reflect on the potential
drawbacks, in terms of management, of having a large list of (rarely tested)
PRs. Eventually, 5 PRs were deprecated in the revision process.

Summing up, several proposals were discussed to improve the performance
assessment process. To enable an early performance feedback, two main pro-
posals were discussed: the assignment of performance assessment activities to
development teams and the automation of performance tests. The former was
considered impractical due the potential overload of development teams and
the lack of proper technical knowledge. The latter led to the identification of
an automated performance test suite involving 12 architecturally relevant PRs.
Another important problem that was discussed was the management of the
PR list, which was considered a major source of troubles for the performance
assessment process. To tackle this problem a revision of PR list was planned,
which led to the deprecation of 5 PRs.

6 Findings

Through a qualitative analysis of the data collected during the ethnographic
study, we distill three key challenges in improving the performance assessment
process in ASD, which we discuss in the following.

18 Luca Traini

Managing performance assessment activities. The organization strug-
gled to design a well-defined process to manage performance assessment activ-
ities. Potential solutions, borrowed from current practices, were discussed to
improve the management of performance assessment activities, such as the use
of PRs as constraints of backlog items'? , or the use of the Definition of Done!?
(Alsaqaf et al., 2019; Behutiye et al., 2020b). Nevertheless, these approaches
were considered unsuitable for the organization. A challenge observed was the
difference, in terms of goals and characteristics, of different performance as-
sessment activities, which made difficult to design a unique process that works
properly for all of them. For instance, some performance testing tasks were
inherently linked to development activities (e.g., assessment of new features),
while others aimed to continuously monitor performance of architecturally rel-
evant operations against system evolution. However, while the assessment of
the latter was potentially crucial for any future software version, the relevance
of the former was typically associated to a one-time development activity. Nev-
ertheless, the organization managed both these performance activities in the
same way, i.e., they were both treated as permanent requirements. Therefore,
a PR added with a high priority, for the assessment of a new feature, might
remain highly prioritized over time due to the lack of priority updates (see Sec-
tion 4.2), thereby leading to a suboptimal selection of performance assessment
activities for future software releases.

Further studies are needed to design novel management approaches, which
takes into account the differential nature of performance assessment activities.

Continuous performance assessment. Continuous assessment of soft-
ware performance usually implies test automation. According to several infor-
mants within the organization, accurate performance tests are often difficult to
automate due their effort in terms of time and resources. To tackle this prob-
lem, the case company organized a meeting with goal of selecting a subset of
PRs for automation. Four main criteria were used to identify this subset: the
relevance of the system operation under test, the ease of automation, the time
effort required to configure and run tests, and the robustness of tests in terms
of maintenance. At the end of this process, 12 architecturally relevant opera-
tions PRs were selected. The choice of proper tests suite for automation and
proper frequency of execution is crucial for successful performance assessment.
The main challenge, in this regard, is to provide an adequate tradeoff between
accuracy and frequency. Indeed, accurate tests usually involves complex con-
figurations of production-like environments and long execution times, hence
they cannot be frequently executed. On the other, lightweight tests are easily
automatable and can be executed more frequently, but they are less represen-
tative of the real system usage, hence they have lower chances of detecting
performance bugs. The organization relied on the knowledge of software ar-
chitects to identify a subset of automated tests. However, nowadays, there is

12 Nonfunctional Requirements - Scaled Agile Framework. https://bit.1ly/3ohrZun
13 Definition of Done, Agile Alliance. http://bit.1ly/2YbdkWS

Exploring Performance Assurance in Agile Software Development 19

still little knowledge on how to properly tackle tradeoff between accuracy and
frequency in performance assessment. More empirical studies are needed to
fill this gap; for example, it would be valuable to understand to what extent
lightweight and easily automatable performance tests (e.g., microbenchmarks
(Laaber and Leitner, 2018)) can mitigate the risks of performance failures.

Performance testing automation also implies to consistently establish whether
a test is passed or not (Fagerstrom et al., 2016). This problem was discussed in
the organization, but no available solution was found. Although this problem
was partially addressed through the use of targets in PRs, the identification of
a performance bug often requires a thorough analysis of operational data that
goes beyond the simple target check. The latter point was confirmed by two
members of the ChogoRi team, which emphasized the need for a human man-
ual analysis to reliably determine whether a test is passed or not. Additionally,
many PRs did not involve a target (i.e., benchmarks), hence, in these cases,
an automated technique is required to provide verdicts. The techniques pro-
posed by Daly et al. (2020), Daly (2021), Nguyen et al. (2012) and Chen et al.
(2017) seem promising in this regard.

Nevertheless, further research is needed on this topic.

Defining the performance assessment effort. Another key challenge
is the definition of the proper work effort devoted to performance assessment
activities. The definition of a clear and commonly accepted balance between
performance assessment activities and other development activities is essential
to enable a reliable performance assurance process. Indeed, different actors in
the organization had different perceptions on the relevance of performance
assessment. Hence, when defining the performance assessment effort, it is cru-
cial to consider these different viewpoints. For example, during the PR revi-
sion, software architects considered every single PR essential to enable reliable
performance assessment. On the other hand, the head of development and
product owners tended to de-prioritize these types activities during software
development, thereby allocating resources that were not sufficient to perform
the amount of performance assessment activities expected by architects. These
conflicting viewpoints and the lack of a commonly shared vision on the amount
of effort devoted to performance assessment led to an increasing number of
(rarely tested) PRs, and caused several issues to the performance assessment
process. Further empirical studies are needed to investigate whether this is
common problem in ASD, and to identify potential best practices.

7 Discussion

Throughout this section, we consider whether our findings may be applicable to
other agile organizations, by comparing our key insights with those of previous
studies reported in the literature.

The first key challenge we discovered concerns the management of per-
formance assessment activities. Although prior work did not explicitly report

20 Luca Traini

this challenge for performance assurance in ASD, similar problems emerged
in the (broader) context of non-functional quality assurance. Several stud-
ies reported difficulties in the management of Non-Functional Requirements
(NFR) in ASD (Alsaqaf et al., 2019; Kasauli et al., 2021; Alsaqaf et al., 2017;
Ramesh et al., 2010; Inayat et al., 2015; Behutiye et al., 2020a). For example,
Alsagaf et al. (2017) highlighted the inadequacy of user stories to document
NFRs. In a subsequent study (Alsaqaf et al., 2019), the same authors reported
that agile teams often rely on custum solutions to cope with this inadequacy
(e.g., assumption’s wiki, multiple product backlogs, rules in monitoring tools).
The lack of well-established guidelines for NFR management in ASD was also
confirmed by the recent study of Behutiye et al. (2020b), which found that dif-
ferent practices are adopted to document NFRs (e.g., user stories, Definition
of Done, acceptance criteria, documents, artifacts, prototypes and also face-to-
face communication). We observed a similar trend in our case study company,
in which different teams used different methods to handle and document per-
formance assessment activities (see Section 4.1.3). Another interesting fact
reported in the literature is that there is often an unclear conceptual defini-
tion of NFR in ASD. According to Alsaqaf et al. (2019), practitioners differ
in how they define the nature of NFR. For example, some consider NFRs as
stand-alone requirements which should not be treated differently from other
functional requirements, while others see NFRs as constraints over functional
requirements. In our study, we observed a dichotomy in the nature of PRs.
For example, some PRs were strictly tightened to functional development ac-
tivities, while others were more similar to stand-alone requirements without
specific relations with development activities. The inability to deal with these
different kinds of PRs led to a suboptimal management of performance as-
sessment activities. Another relevant problem concerns the lack of an explicit
mechanisms for updating or changing requirements in agile frameworks, as re-
ported by Kasauli et al. (2021). Interestingly enough, they reported that a case
company was facing problems in keeping updated the list of NFRs. Originally,
they planned to perform regularly updates on the NFRs list, however this ap-
proach only worked in the short term, subsequently the list started to become
slowly out of date. We observed the same problem in our case organization
as described in Section 4.2.1. In our case organization, the latter problem was
strictly related to the lack of availability of relevant professional figures, such
as product owners and architects. Interestingly, Alsaqaf et al. (2017) reported
the heavy workload of product owners’ and their insufficient availability as
two main challenges for non-functional quality assurance in ASD.

Another key challenge we found is continuous performance assessment.
In Section 4.2.2, we showed through an explanatory example the potential
side-effects of the late identification of a performance issue. Empirical stud-
ies on non-functional quality assurance reported similar results. For example,
Behutiye et al. (2020a) reported the late consideration of NFRs as a major
challenge for quality assurance in ASD. According to them, handling non-
functional issues in the late phases of development leads to unpredictable effort
estimation and may induce the introduction of many changes. Alsaqgaf et al.

Exploring Performance Assurance in Agile Software Development 21

(2017) also reported as a key challenge the validation of NFRs too late in the
process. To tackle this problem, Johnson et al. (2007) proposed to incorporate
performance testing in test-driven development through a technique called
test-first performance (TFP), thus enabling early performance feedback from
the system under evolution. According to them, the continuous performance
feedback increased performance awareness during development and induced
developers to design and code for better performance. During our study, the
researcher proposed to assign performance assessment activities directly to
development teams to enable early assessment of development activities. Nev-
ertheless, the proposal was discarded by the management due to the potential
overload for development teams and the lack of adequate technical skills. Inter-
estingly, Behutiye et al. (2020a) reported the limited NFR expertise of agile
teams as a key challenge for quality assurance in ASD. According to them,
team members who lack NFR skills may emphasize implementation of func-
tional requirements and ignore non-functional quality assurance.

Automated performance testing is also crucial to enable continuous perfor-
mance feedback against the evolving system. Our case company faced two
main problems when trying to automate performance tests: (i) the high effort
(in terms of time and resources) required to perform accurate performance
tests and (ii) the lack of clear “pass/fail verdicts” in performance tests. The
relevance of these problems beyond the studied setting is confirmed by the re-
cent interest of the research community in reducing the effort of performance
tests (Laaber et al., 2020; Ding et al., 2020; Alghmadi et al., 2016) and provid-
ing automated verdicts (Fagerstrom et al., 2016; Daly et al., 2020; Chen et al.,
2017).

The third challenge we discovered concerns the definition of the perfor-
mance assessment effort. Several empirical studies reported that ASD often
induces a reduction of the effort devoted to non-functional quality assurance.
Behutiye et al. (2020a) reported that ASD management teams often tends
to prioritize more feature development goals, and the focus on prioritizing
only business value may lead to problems in terms non-functional quality. A
similar tendency was observed by Alsaqaf et al. (2019), which reported that
user stories priorities can be ignored when deadlines are approaching and the
need to deliver functional features becomes greater than non-functional qual-
ity assurance. According to them, the commitment to deliver the software
in time translates into focusing on functional development alone. Neverthe-
less, Cao and Ramesh (2008) reported that ASD teams that focused only on
business value prioritization faced challenges in system efficiency and secu-
rity, which affected the success of the software product. Kasauli et al. (2021)
criticized widely popular ASD frameworks, such as LeSS and SAFe, for not
providing any concrete guidance on how to balance the trade-off between prod-
uct quality and time-to-market pressure. Indeed, companies usually adopts
custom solutions to tackle this problem. For example, Alsaqaf et al. (2019)
reported that one of their case companies reserved parts of the sprint to non-
functional quality assurance activities such as performance assessment. An-
other case company instead used three different product backlogs to deal with

22 Luca Traini

different viewpoints of stakeholders. One of them was filled up with user stories
by the product owner and represented the customer’s business desires. While
another was filled up by the software architect and represented non-functional
quality assurance activities. In our study, we observed that a vague definition
of the performance assessment effort and the lack of management of conflicting
stakeholders’ viewpoints induced a suboptimal performance assessment.

Overall, the consistency of our insights with those of other studies suggests
that our findings are relevant beyond the studied setting.

Most of the prior work broadly focus on non-functional quality assur-
ance, and do not examine how agile teams tackle non-functional quality as-
surance in their daily work. The few previous studies specifically addressing
performance assurance in ASD only tackle specific aspects such as PR man-
agement (Chih-Wei Ho et al., 2006) or continuous performance assessment
(Johnson et al., 2007). Through an ethnographic study, we investigated the
whole performance assurance process in an ASD organization. The “thick pic-
ture” provided by ethnography enabled us to gather an holistic view on the
performance assurance process, and to distill challenges involving both pro-
cess (e.g., management and documentation of performance assessment activi-
ties) and technical aspects (e.g., performance testing automation). This novel
holistic perspective can be useful to (i) software organizations, for avoiding
the disclosed issues and leveraging the reported advices for the improvement
of performance assurance in ASD, and (ii) researchers, for driving specific di-
rections in software performance engineering research that are grounded in
practice.

8 Threats to validity
8.1 Construct validity

Research involving people observation, such as ethnographic studies, may orig-
inate issues in terms of bias and rigor. Empirical research in industrial practice
puts the researcher in a situation influenced by contradicting interests, hierar-
chies, and personal antagonisms (Dittrich, 2002). To mitigate such issues, we
first sought to establish a prolonged involvement in the fieldwork by keeping
close contact with the organization members for six months. The development
of a trusting relationship helped us to collect data from different perspec-
tives, and also to observe the organization actors working in different Scrum
ceremonies, meetings and daily activities. We also had access to system and
process documentation. The significant amount of gathered data supported
data triangulation which gave us a better confidence in our interpretation. In
order to guarantee the quality of our descriptions, we took into account data
gathered from different sources, e.g., photographs, digital copies of documents
and hand-written notes.

Exploring Performance Assurance in Agile Software Development 23

Following the best practices in ethnographic research (Sharp et al., 2016),
we didn’t rely on a rigid plan, instead we keep data collection plans and ex-
pectations flexible to keep an “open mind” about the practices under study.
Although this flexibility may suggest a lack of rigor, it is also considered as
one of the main strengths of ethnographic research (Fetterman, 2019).

8.2 Internal validity

In our study, we were interested in understanding the practices of perfor-
mance assurance as practitioners were interested in improving such practices.
This might have influenced the participants’ interaction with the researcher, as
practitioners often expect recommendations and improvements when engag-
ing with researchers conducting an ethnographic study (Sharp et al., 2016). In-
deed, the researcher could be perceived as a managerial agent who will provide
recommendations to improve their process. On the other hand, practitioners
might hide aspects of their practice they do not want to have documented for
management. In order to minimize this threat, we tried to be explicit about the
intention of our research and the interaction with the involved stakeholders.

In the last three months of the study, the researcher actively participated
to the improvement of the performance assurance process, thereby potentially
influencing the outcome of the research. Although this could be a potential
threat, the intent of our ethnographic study is to provide not only an in-depth
understanding of the performance assurance practices, but also to support the
improvement of such practices. Indeed, simply understanding practice may not
be enough to satisfy the purpose of our research, as we aim to also understand
the challenges in improving the performance assurance process. Additionally,
when performing an ethnographic study, practitioners typically expect help
by the researcher with improving their practices, and they could be puzzled if
the researcher does not help to improve them (Sharp et al., 2016).

The results obtained with ethnography tends to have a high internal va-
lidity (Sharp et al., 2016) as far as the situation or context within which the
evidence is gathered is consistent with the aim of the study (McGrath, 1995).
Indeed, we conducted an ethnographic study in a R&D division of a large
company that adopts Scrum (Rubin, 2012), i.e., a widely popular Agile devel-
opment process, as we aim to understand the practices and the challenges for
software performance assurance in the context of ASD.

8.3 External validity

There could be a limitation by focusing on one organization. Indeed, ethno-
graphic studies are often criticized to have a weak external validity, 4.e., do
not necessarily generalize to other contexts (McGrath, 1995). For example,
the practices adopted by other organizations may be different and more effec-
tive. However, we compared the problems and challenges found in our study

24 Luca Traini

with those reported by other non-functional quality assurance studies in Ag-
ile contexts (e.g., (Alsaqgaf et al., 2019; Behutiye et al., 2020a; Kasauli et al.,
2021; Behutiye et al., 2020b)). The consistency of our results with the ones
presented in other studies gives us confidence that the main findings of this
study are portable to other organizations.

9 Related work

There are few studies concerning performance assurance in the context of ASD.
Chih-Wei Ho et al. (2006) proposed an evolutionary model for PRs specifica-
tions, called PREM. PREM provides guidelines on the level of detail needed
in a PR for development teams to specify the necessary performance details
and the form of validation for the PR. Our case organization used an approach
somehow similar to PREM, where PRs were first roughly defined by product
owners (or architects), and then iteratively refined with the testing team. The
same authors of PREM, in another article (Johnson et al., 2007), described an
experience in incorporating performance tests in Test-Driven Development. In
our study, the researcher proposed to integrate performance testing activities
as part of the development cycle. Nevertheless, the proposal was rejected since
development teams were considered too busy and unexperienced to deal with
this kind of activities.

Studies investigating non-functional quality assurance in the context ASD
are related to our work. In an early study, Ramesh et al. (2010) identified
inadequate attention given to non-functional requirements as a major issue
in ASD, by reporting specific concerns on software performance. The same
problem was also reported in a systematic literature review on requirement
engineering practices in ASD (Inayat et al., 2015). Similarly, in a recent em-
pirical study, Kasauli et al. (2021) reported difficulty in handling NFRs in the
context of large-scale ASD, highlighting a lack of proper solutions to effectively
handle NFRs. Interestingly, they reported that, similarly to our case organiza-
tion, one of their case companies was facing problems in handling and keeping
updated the list of NFRs. On the other hand, they also reported a reluctance
to record NFRs in Agile companies, while we didn’t observe a similar behavior
in our case organization.

Behutiye et al. (2020a) identified four top categories of challenges for NFR
management in ASD: the limited ability of ASD to handle NFR, time con-
straints due to short iteration cycles, limitations regarding the testing of NFRs
and neglect of NFRs were the top categories of challenges. According to them,
short iteration cycles and time constraints minimize the focus on addressing
NFRs, and emphasize more implementation of functional features. In another
study, Behutiye et al. (2020b) investigated documentation of NFRs in ASD.
They found that different practices are used to document NFRs: user stories,
Definition of Done, acceptance criteria, documents, artifacts, prototypes and
also face-to-face communication. According to them, companies approach to
documentation of NFRs to fit the needs of their context, and the choice of the

Exploring Performance Assurance in Agile Software Development 25

practices is affected by factors such as product domain, organization size and
practitioners’ experience.

Through a systematic literature review, Alsaqaf et al. (2017) identified
challenges that harm the management of NFRs in large-scale distributed Ag-
ile projects. Among them, there are: the inability of user stories to document
NFRs, and the validation of NFRs that occurs too late in the process. The
same researchers performed an empirical study (Alsaqaf et al., 2019) to iden-
tify mechanisms behind the challenges of managing NFRs in large-scale dis-
tributed Agile projects, and practices used to mitigate the impact of these
challenges. They found that minimal documentation might result in missing
the rationale behind NFR tradeoffs and architecture decisions taken earlier.
Moreover, according to their findings, the priorities associated with user sto-
ries could be shuffled when deadlines are approaching and the need to deliver
functional features becomes more critical than verifying NFRs. Example of
practices adopted to mitigate challenges involves: reserving part of the sprint
for NFRs assessment and the use of multiple product backlogs to include re-
quirements of different viewpoints. Other studies address quality assurance in
ASD in the specific context of safety-critical systems (Hanssen et al., 2016;
Fitzgerald et al., 2013).

Prior work broadly investigate non-functional quality assurance in ASD,
while our study specifically target performance assurance. Moreover, these
studies present results based on data collected through interviews and surveys,
but do not examine how agile teams tackle non-functional quality assurance in
their daily work. Instead, we explored how performance assurance is integrated
in software development daily work by means of an ethnographic qualitative
approach (Sharp et al., 2016).

10 Conclusion

Our research objective was to explore practice and challenges for performance
assurance in ASD. Through our ethnographic study, we showed that companies
face several challenges in ensuring software performance in ASD. The lack of
guidelines and well-established practices induces the adoption of approaches
that can be obsolete and inadequate for the observed contexts, thereby leading
to sub-optimal management of performance assurance activities.

An important concern is the definition of the proper effort devoted to
performance assessment activities. Indeed, different actors of an organization
(e.g., product owners and software architects) have different perceptions on the
relevance of performance assessment activities. Hence, a clear and commonly
shared definition of the amount of effort devoted to these activities is crucial
to enable a reliable performance assurance process.

Continuous performance assessment also plays a relevant role in ASD. In-
deed, the late identification of performance bugs may imply time-consuming
debugging, expensive reworks and potential technical debt. In that, perfor-
mance testing automation becomes essential to enable continuous performance

26 Luca Traini

feedback against frequent code changes. A main challenge, in this regard, is the
identification of a proper tradeoff between test frequency and accuracy. Indeed,
accurate performance tests cannot be frequently executed, since they require
complex production-like environments and high amount of hardware resources.
On the other hand, lightweight performance tests are easier to automate and
less demanding in terms of resources, but they are also less representative of
the real system usage, hence less prone to discover performance bugs. More
empirical studies are needed to understand to what extent lightweight perfor-
mance tests (e.g., microbenchmarks (Laaber and Leitner, 2018)) can mitigate
the risks of major performance failures. Another relevant challenge for the
automation of performance tests is the lack of a clear pass/fail verdict. Perfor-
mance test results (e.g., mean execution time) are usually compared to a base-
line (e.g., results of a previous software version) to determine a verdict, and it is
often difficult to judge (in an automated way) whether the performance change
is relevant or not. State-of-the-art approaches leverage change point detection
(Daly et al., 2020), statistical process control techniques (Nguyen et al., 2012)
or regression models (Chen et al., 2017) to identify significant changes from
the history of performance results. Nevertheless, further studies are needed to
design reliable automated verdicts for continuous performance assessment.

In summary, this paper has shown that the assessment of software perfor-
mance in the context of ASD is still far from being flawless. Further research
is needed to improve the management of performance assessment activities,
and to enable effective continuous performance assessment. In particular, we
encourage future studies to investigate performance assurance practices and
challenges in other Agile organizations with different characteristics (e.g., do-
main, organization size, development methodology) to further strengthen (or
debunk) the validity of our findings.

Acknowledgements This work is partially founded by Territori Aperti (a project funded
by Fondo Territori Lavoro e Conoscenza CGIL, CSIL and UIL) and by the project “Soft-
ware Performance in Agile/DevOps context” funded within Programma Operativo Nazionale
Ricerca e Innovazione 2014-2020. I would like to thank Vittorio Cortellessa for making this
industry collaboration possible. I would also like to thank him for the useful suggestions and
comments that were helpful in improving the paper.

References

Alghmadi HM, Syer MD, Shang W, Hassan AE (2016) An automated ap-
proach for recommending when to stop performance tests. In: 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pp 279-289, DOI 10.1109/ICSME.2016.46

Alsagaf W, Daneva M, Wieringa R (2017) Quality requirements in large-scale
distributed agile projects — a systematic literature review. In: Griinbacher P,
Perini A (eds) Requirements Engineering: Foundation for Software Quality,
Springer International Publishing, Cham, pp 219-234

Exploring Performance Assurance in Agile Software Development 27

Alsagaf W, Daneva M, Wieringa R (2019) Quality requirements
challenges in the context of large-scale distributed agile: An
empirical study. Information and Software Technology 110:39
- 55, DOI https://doi.org/10.1016/j.infsof.2019.01.009, URL
http://www.sciencedirect.com/science/article/pii/S0950584918300739

Anderson B (1997) Work, ethnography and system design. In: Kent A,
Williams JG (eds) The Encyclopedia of Microcomputers, vol 20, Marcel
Dekker, New York, NY, USA, pp 159-183

Aver K, Beck K (1996) Lazy Optimization: Patterns for Efficient Smalltalk
Programming, Addison-Wesley Longman Publishing Co., Inc., USA, pp 19—
42

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler
M, Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin
RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001) Manifesto for
agile software development. URL http://www.agilemanifesto.org/

Behutiye W, Karhapad P, Lépez L, Burgués X, Martinez-Ferndndez
S, Vollmer AM, Rodriguez P, Franch X, Oivo M (2020a) Manage-
ment of quality requirements in agile and rapid software development:
A systematic mapping study. Information and Software Technology
123:106225, DOI https://doi.org/10.1016/j.infsof.2019.106225, URL
http://www.sciencedirect.com/science/article/pii/S095058491930240X

Behutiye W, Seppéanen P, Rodriguez P, Oivo M (2020b) Documen-
tation of quality requirements in agile software development. In:
Proceedings of the Evaluation and Assessment in Software En-
gineering, Association for Computing Machinery, New York, NY,
USA, EASE ’20, pp 250-259, DOI 10.1145/3383219.3383245, URL
https://doi.org/10.1145/3383219.3383245

Brutlag J (2009) Speed matters. URL http://services.google.com/fh/files/blogs/google_delayexp.pdf,
[online] http://services.google.com/fh/files/blogs/google_delayexp.pdf

Cao L, Ramesh B (2008) Agile requirements engineering practices: An empir-
ical study. IEEE Software 25(1):60-67, DOI 10.1109/MS.2008.1

Chen TH, Syer MD, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P
(2017) Analytics-driven load testing: An industrial experience report on
load testing of large-scale systems. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), pp 243-252, DOI 10.1109/ICSE-SEIP.2017.26

Chih-Wei Ho, Johnson MJ, Williams L, Maximilien EM (2006) On agile perfor-
mance requirements specification and testing. In: AGILE 2006 (AGILE’06),
pp 6 pp.—52, DOTI 10.1109/AGILE.2006.41

Daly D (2021) Creating a virtuous cycle in performance testing at mon-
godb. In: Proceedings of the ACM/SPEC International Conference on
Performance Engineering, Association for Computing Machinery, New
York, NY, USA, ICPE 21, p 33-41, DOI 10.1145/3427921.3450234, URL
https://doi.org/10.1145/3427921.3450234

Daly D, Brown W, Ingo H, O’Leary J, Bradford D (2020) The use of change
point detection to identify software performance regressions in a continuous

28 Luca Traini

integration system. In: Proceedings of the ACM/SPEC International Con-
ference on Performance Engineering, Association for Computing Machinery,
New York, NY, USA, ICPE 20, pp 67-75, DOI 10.1145/3358960.3375791,
URL https://doi.org/10.1145/3358960.3375791

Ding Z, Chen J, Shang W (2020) Towards the use of the readily avail-
able tests from the release pipeline as performance tests: Are we there
yet? In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, Association for Computing Machinery, New York,
NY, USA, ICSE 20, p 1435-1446, DOI 10.1145/3377811.3380351, URL
https://doi.org/10.1145/3377811.3380351

Dittrich Y (2002) Doing empirical research on software development: Finding
a path between understanding, intervention, and method development. In:
Social Thinking-Software Practice, The MIT Press, pp 243-262

Fagerstrom M, Ismail EE, Liebel G, Guliani R, Larsson F, Nordling K, Knauss
E, Pelliccione P (2016) Verdict machinery: On the need to automatically
make sense of test results. In: Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, Association for Computing Ma-
chinery, New York, NY, USA, pp 225-234, DOI 10.1145/2931037.2931064,
URL https://doi.org/10.1145/2931037.2931064

Fetterman DM (2019) Ethnography: Step-by-step. Sage Publications

Fitzgerald B, Stol K, O’Sullivan R, O’Brien D (2013) Scaling agile methods
to regulated environments: An industry case study. In: 2013 35th Inter-
national Conference on Software Engineering (ICSE), pp 863-872, DOI
10.1109/ICSE.2013.6606635

Fowler M (2002) Yet another optimisation article. IEEE Software 19(3):20-21,
DOI 10.1109/MS.2002.1003448

Geertz C (1988) Works and lives : the anthropologist as author. Stanford
University Press, Stanford, Calif.

Hanssen GK, Haugset B, Stalhane T, Myklebust T, Kulbrandstad I (2016)
Quality assurance in scrum applied to safety critical software. In: Sharp H,
Hall T (eds) Agile Processes, in Software Engineering, and Extreme Pro-
gramming, Springer International Publishing, Cham, pp 92-103

Heikkila VT, Paasivaara M, Lassenius C (2013) Scrumbut, but does it matter?
a mixed-method study of the planning process of a multi-team scrum orga-
nization. In: 2013 ACM / IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, pp 85-94, DOI 10.1109/ESEM.2013.27

Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S (2015)
A systematic literature review on agile requirements engineer-
ing practices and challenges. Computers in Human Behavior
51:915 - 929, DOI https://doi.org/10.1016/j.chb.2014.10.046, URL
http://www.sciencedirect.com/science/article/pii/S074756321400569X,
computing for Human Learning, Behaviour and Collaboration in the Social
and Mobile Networks Era

Jiang ZM, Hassan AE (2015) A survey on load testing of large-scale soft-
ware systems. IEEE Transactions on Software Engineering 41(11):1091—
1118, DOI 10.1109/TSE.2015.2445340

Exploring Performance Assurance in Agile Software Development 29

Johnson MJ, Ho C, Maximilien EM, Williams L (2007) Incorporating per-
formance testing in test-driven development. IEEE Software 24(3):67-73,
DOI 10.1109/MS.2007.77

Kasauli R, Knauss E, Horkoff J, Liebel G, de Oliveira Neto FG
(2021) Requirements engineering challenges and practices in large-
scale agile system development. Journal of Systems and Software
172:110851, DOI https://doi.org/10.1016/j.jss.2020.110851, URL
http://www.sciencedirect.com/science/article/pii/S0164121220302417

Knuth DE (2007) Computer Programming as an Art, Association
for Computing Machinery, New York, NY, USA, p 1974. URL
https://doi.org/10.1145/1283920.1283929

Laaber C, Leitner P (2018) An evaluation of open-source software mi-
crobenchmark suites for continuous performance assessment. In: Pro-
ceedings of the 15th International Conference on Mining Software
Repositories, Association for Computing Machinery, New York, NY,
USA, MSR ’18, pp 119-130, DOI 10.1145/3196398.3196407, URL
https://doi.org/10.1145/3196398.3196407

Laaber C, Wiirsten S, Gall HC, Leitner P (2020) Dynamically reconfiguring
software microbenchmarks: reducing execution time without sacrificing re-
sult quality. In: Devanbu P, Cohen MB, Zimmermann T (eds) ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, ACM, pp 989-1001, DOT 10.1145/3368089.3409683,
URL 10.1145/3368089.3409683

McGrath JE (1995) Methodology Matters: Doing Research in the Behavioral
and Social Sciences, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, p 152-169

Meyer H (2009) Manufacturing FExecution Systems: Optimal Design,
Planning, and Deployment. McGraw-Hill Education, New York, URL
https://www.accessengineeringlibrary.com/content/book/9780071623834

Nguyen TH, Adams B, Jiang ZM, Hassan AE, Nasser M, Flora P (2012) Auto-
mated detection of performance regressions using statistical process control
techniques. In: Proceedings of the 3rd ACM/SPEC International Confer-
ence on Performance Engineering, Association for Computing Machinery,
New York, NY, USA, ICPE ’12, p 299-310, DOT 10.1145/2188286.2188344,
URL https://doi.org/10.1145/2188286.2188344

Ramesh B, Cao L, Baskerville RL (2010) Agile requirements en-
gineering practices and challenges: an empirical study. Inf Syst
J 20(5):449-480, DOI 10.1111/j.1365-2575.2007.00259.x, URL
https://doi.org/10.1111/3.1365-2575.2007.00259 . x

Rubin KS (2012) Essential Scrum: A Practical Guide to the Most Popular
Agile Process, 1st edn. Addison-Wesley Professional

Sharp H, Dittrich Y, de Souza CRB (2016) The role of ethnographic studies in
empirical software engineering. IEEE Transactions on Software Engineering
42(8):786-804, DOT 10.1109/TSE.2016.2519887

30 Luca Traini

Smith C, Williams L (2001) Performance Solutions: A Prac-
tical Guide to Creating Responsive, Scalable Software.
Addison-Wesley object technology series, Addison-Wesley, URL
https://books.google.it/books?id=X5V1QgAACAAT

Woodside M, Franks G, Petriu DC (2007) The future of software perfor-
mance engineering. In: 2007 Future of Software Engineering, IEEE Com-
puter Society, USA, FOSE ’07, pp 171-187, DOI 10.1109/FOSE.2007.32,
URL https://doi.org/10.1109/F0SE.2007.32

