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Lives on earth are regulated by of complex system of interactions.
Modelling those interactions through the network paradigms allows re-
searchers to discover and understand the fundamental molecular mecha-
nisms which drive the biological processes and lead to humans diseases.
The advancement made in the development of sequencing technologies
has produced a growing amount of biological data. The aforementioned
preconditions are at the base of a flourishing production of Deep Learn-
ing methods able to cope with the complexity and the data abundance
of this domain. For those reasons, this chapter provides a comprehensive
overview of the recent advancement in the deep learning network-based
approaches focusing on biology, medicine and pharmacological crucial
research’s problems. At first, the needed biological and network science
backgrounds are presented. Secondly, a comprehensive overview of the
biologicals’ networks and resources are provided. Finally, we will discuss
the most recent methods in the field organising them into three broad
categories related to the Interactome, the Network Pharmacology, and
the frontier biologicals problems.
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1. Introduction

The last decades are characterised by the advance of high-throughput
technologies, such as the yeast two-hybrid screening and the next-
generation sequencing. This advancement in technologies has boosted
the creation of large ‘omics’ datasets (i.e. molecular data) which helped
to reveals and understand the complex interconnections among all the
subparts® of an organism.

In this context, researchers need new “holistic” tools to cope with
the dimension and the complexity of the biological data. The response to
this demand, as we will see, is the modelisation offered by the Networks
formalism. Biological networks, such as protein-protein interaction net-
work, are new representations of “omics” data and combine network
science and biology approaches to analyse the interconnection of biolog-
ical processes. The study of the structures and functions of the biological
networks is known as Network Biology or Systems biology. The study
of the pathogenic behaviour and drug processes in biological networks is
referred to as Network Medicine. Systems biology and network medicine
are the keys to: ) understand the biological mechanisms and i) address
challenges on both diagnostic and therapeutic aspects. The research
literature has studied biological networks by using a plethora of graph-
mining and classic machine learning approaches. However, diving in the
complexity of the molecular interconnections across several levels of the
organism’s organisation is challenging. To overcome this limitations, re-
searchers are adopting new powerful strategies in network biology and
network medicine. Adopt Deep learning techniques in biology allow to
explore the latent mechanisms and untangle the intricate molecular in-
terconnections that standard approaches are not able to. In last years,
promising deep learning methods in graph-mining, as Graph Convolu-
tional Networks, have been successfully applied to biological networks
to solve problems as drug repurposing and identify new disease genes.

This chapter, discuss the deep learning network-based approaches
applied to both network biology and network medicine. The chap-
ter is organised as follow. Section 2 provides fundamentals knowledge
about Networks’ Theory (2.1), Learning Problems on Networks (2.2)
and Ground concepts of the System Biology (2.3). The third section (3
is dedicated to describe in a formal way the most important Biological
Networks (3.1) and the Public available resources (3.2). In section 4,5
and 6 the most recent Deep Learning based methods - organised by the
tackled problem and the used data - are presented. Lastly, section 7
discusses the future directions and concluding remarks.

2In a modelisation of the organism as a system.
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2. Background knowledge

In this section, it is presented a comprehensive summary of the key
aspects related to network biology. More precisely, in section 2.1 the
fundamental network concepts are briefly introduced. Section 2.2 de-
scribes the learning/prediction problems in network science. Finally, in
section 2.3 the most important biological concepts are summarised.

2.1. Networks background and formalisation

In this sub-section we summarises the network concepts and properties
most useful in network biology:

- Network: A simple network or graph is a mathematical formalism
that allows describing in an abstract and concise way both the compo-
nents of a system and their interactions. Formally, a graph G = (V, E)
is defined as a tuple containing the two sets V and E. V is the set
of objects, called nodes or vertices of the graph. The set of edges
E C {(u,v)|u,v € V} contains the relationships among the objects of
the system. Edges - also called links or ties - can be either directed or
undirected.

Directed edges are necessary to describe asymmetrical relationships.
Having a relationship among nodes ¢ and j does not imply having the
same relationship between nodes j and i. On the other hands, the undi-
rected case implies that the relationships in the system are symmetrical.
It is not necessary to distinguish the relationship among nodes ¢ and j
from the one from node j to i. To collect differences among the im-
portance of each relationship is useful to define a weighting function
w(e) :  E — R, which returns values of the edges according to the
semantics of the system. When a weighting function is defined, we call
the graph a weighted one. Each simple graph (binary) is described
by a square matrix A - called the adjacency matrix - of sizes |V| x |V,
where its element A;; contains 1 if exists an edge from vertex 7 to vertex
j, or zero otherwise. When the weighting function w(e) is defined, the
elements A;; of the adjacency matrix are equivalent to the values of the
weighting function w(i, ), or zero otherwise. A graphical representation
of a simple binary undirected graph and of a weighted directed one is
depicted in figure 1.

The complex systems or the heterogeneous networks - where dif-
ferent information is associated with the system components and several
kinds of relationships exist - can be modelled in many ways. They can
be modelled as a decorated graph with categorical and/or numerical at-
tributes on both edges and vertices. To encode this information with the
graph, several (one for each attribute) mapping functions are defined.
Later on, we will refer to this kind of graph as one with attributes.

The bipartite graph contains two distinct kinds of vertices, and
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Binary , Undirected Weighted , Directed

Fig. 1. Examples of several types of simple networks

no two vertices within the same set are adjacent. A bipartite graph
G = (V,U, E) is defined as a triple containing the three sets V, U and
E. V and U are two disjoint sets of vertices: V NU = . The set of
edges E C {(u,v)] (ueVNuvelU)U@weVNueU)} contains the
relationships among the two different kinds of vertices. The bipartite
graph is a special case of a k-partite graph where k = 2.

- Other important Networks’ concepts and properties:
e Degree: the node’s degree is the number of edges (incoming and/or outgoing
in the directed case) of a node;

e Path/Diameter: a path, or walk, is a sequence of nodes in which every
node is adjacent to the next one in the sequence. The diameter is the longest
path between any pair of nodes;

e Hub: is a node which exposes a degree higher than the average degree of the
network (normally it is a property analysed in the directed graphs considering
only the out-degree);

e Connected Graph: a graph is strongly connected if exists a path for any
pair of its nodes;

e Induced Sub-graph: an induced sub-graph H is a graph containing a
node subset of V' and all the edges among them. Let be G the initial graph;
H=Vyg CV,Eug ={(u,v)|lu,v € Vug and (u,v) € E});

e Motif: a Motif is a recurrent and statistically significant partial sub-graph.
Note that the motifs differ from graphlets since they can be partial sub-
graphs, whereas motifs are induced sub-graphs;

e Community: the definition of “community” may change according to the
application domain. From a network perspective, usually, a community is a
locally dense sub-graph where the edges’ density among the inside commu-
nity’s nodes is higher than the edges’ density among the inside community’s
nodes and outside ones;

¢ Random Network: a network generated by a random distribution prob-
ability (e.g. Erdés-Rényi model’). A node v € V is connected to another
node of the network following a certain probability p.
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e Scale-Free Network: a network whose degree distribution follows the
power-law distribution;

e Small-World Network: a network in which any pair of nodes is connected
to the other nodes of the network by a small, proportionally to log(|V]),
path.

2.2. Learning Problems on Networks

Networks are mathematical tools used to study and predict properties in
the domains’ applications related, but not limited, to social behaviours,
economic events, biology processes, traffic flow and internet connections.
Despite the differences, every application on those domains is reducible
to the same general networks’ prediction tasks:

e Node Classification: Typically a class is used to group a collection of
nodes that expose similar characteristics. The classes are typically referred
by unique textual descriptions — namely labels or tags. Using nodes which
are already classified, it is possible to train a classifier which captures some
knowledge. A trained classifier can be used to assign a class to an unknown
node. For instance, we would like to learn which proteins are related to a
certain disease. The classification tasks can be either binary or multi-class
(a given data instance may be assigned to one or many classes, respectively).

e Link Prediction: A fundamental problem with networks is that the link
information in the graph may be of doubtful quality or not present at all.
Thus, inferring the existences of edges between nodes has been referred to
as link prediction.” Link prediction is a challenging problem that has been
studied in various guises in different domains. The prediction of a link can
be solely based on structural information (graph associations) or also on the
attribute information.

¢ Community Detection: Community detection refers to the procedure of
identifying groups (sub-graphs) of tightly interacting vertices (i.e., nodes) in
the network.

e Representation Learning: Representation learning is about deriving a
succinct representation of the input data (graph in our settings”). This
succinct representation allows to achieve better performances (of the classi-
fication/prediction task) or to reduce the computational complexity. Exists
many representation learning approaches: in deep learning, the representa-
tion is typically achieved by the composition of multiple non-linear transfor-
mations (hidden layers) of the input data.

2.3. Ground concepts of the System Biology

Hereafter we present the fundamental biological concepts necessary to
understand the papers collected in this chapter. Note that in the net-
work biology, the followings biological/molecular concepts are normally
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organised in databases which collects this information in one place. To
have a complete overview of these databases see section 3.2. The bi-
ological concepts are tightly interconnected. We decided to present at
first the most important or general ones, further all the others. For
this reason, we invite the reader to go through all this section to better
understanding all the ground concepts.

e Cells: are building blocks of the structure of an organism. A cell is a
structure containing DNA| cytoplasm, cellular structures (e.g. ribosomes)
and several molecules (e.g. proteins), all surrounded by a membrane. The
specialisation of a cell (in term of functionality) is determined by the gene
expression. A collection of cells that work together to accomplish the same
function is called tissue.

e Biological Pathway: is an ordered sequence of actions among molecules
(e.g. proteins or complexes), in a cell that leads to the creation of product or
change the cellular state. As example, a pathway could lead to the synthesis
of a molecule, regulate genes, or spur a cell to move. The most common
pathway types are metabolic pathways, gene regulation pathways, and signal
transduction pathways. A metabolic pathway is a series of chemical reactions
occurring within a cell. Gene regulation pathways turn genes on and off. The
signal transduction pathway is a series of intracellular molecular events as
a response to the activation of a cell’s receptor by an extracellular signal.
Enzymes, usually proteins, are involved in almost all metabolic pathways to
accelerates chemical reactions.

e Proteins: are large molecules composed by amino acids. They are respon-
sible for biological processes in the cell. The sequence of amino acids and
the environment determine both the protein’s three-dimensional structure
and its specific function. The instructions to build the sequence of amino
acids of a protein are stored in the genes. As a convention, proteins are
classified by family and domain. A protein family is a group of proteins
sharing a common evolutionary origin reflecting a related set of functions
or/and structural similarities. Domains are a compact way to describe the
three-dimensional structure of a protein in structural units(responsible for
a particular function or interaction). Another important aspect related to
proteins is their ontological organisation. The Go-terms are proteins/genes’
ontological concepts organised into their three fundamental facets: molecular
activities, cellular structures and biological processes.

e Protein-Protein Interaction (PPI): is a physical interaction which takes
place in a cell among the structural region of two proteins. A PPI is re-
sponsible for biological processes and can be permanent, as in the case of
the protein complexes®, or can be transient as in the case of the signals.
Protein-Protein Interactions are essential to understand how molecular bio-
logical processes are carried.

bProtein Complex (e.g. Haemoglobin) is an aggregation of proteins connected by protein-
protein interactions.
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e Deoxyribonucleic acid (DNA): “is a complex and hereditary molecule
that contains all of the information necessary to build and maintain an or-
ganism”°. All organisms have a full copy of the DNA held within every cell.
The DNA is composed of a chain of linked blocks, called nucleotides. Each
nucleotide is characterised by one of the four chemical bases: adenine (A),
guanine (G), cytosine (C), and thymine (T)®. The ordered sequence - con-
stituted by about 3 billion of base pairs - encodes the information necessary
to make the essential molecules such as proteins. The DNA is a string of
roughly 3 billion characters where the alphabet is {A, C, G, T}.

e Gene: is a section (contiguous subsequence) of the DNA that encodes in-
formation of a functional unit. The Human Genome Project® estimated that
humans have between 20, 000 and 25,000 genes. Mutations in the DNA cause
diverse versions of the genes, namely alleles. The information stored in genes
- as the rest of the DNA - contribute to regulating the mechanisms behind
the proteins’ synthesis.

e Genotype and Phenotype: the genotype is the collection of an organ-
ism’s genes. The term phenotype refers to the observable traits of an or-
ganism. The phenotype is determined by the genotype, the gene expression
and environmental factors.

e Gene/Protein Nomenclature: several committees are responsible for
genes and proteins nomenclature. Despite the standardization effort, the
multitude of nomenclatures cased ambiguities’. The HUGO Human Gene
Nomenclature Committee (HGNC)? is responsible to assign names and sym-
bols (shorter-form of the names) to the humans’ genes. Alternatively, the
most popular nomenclatures in bioinformatics are the Entrez ID and the
Ensembl ID". UniprotKB, complete the nomenclatures’ overview, providing
names also for protein isoforms. In bioinformatics, Entrez and UniportKB
are the most used nomenclatures for a programmatic access. The literature
generally adopt the HGNC names or acronyms.

e Gene Expression: is the cellular process of synthesizing proteins or func-
tional RNA. Gene expression is composed of two main steps: transcription
and translation. The transcription is the process of transferring the informa-
tion stored in a gene to the cytoplasm through the messenger-RNA (mRNA)
which promote the translation process. During the translation process, the
readed mRNA sequence in collaboration with the transfer-RNA (tRNA) al-
lows to assembles the protein.

e Gene Regulation: is the process of controlling the gene expression profile
in a cell. Gene regulation increase, decrease or suppress the expression of

“https://wuw.nature.com/scitable/topicpage/introduction-what-is-dna-6579978/
dhttps://ghr.nlm.nih.gov/primer/basics/dna

®https://wuw.genome.gov/
fhttps://www.uniprot.org/help/different_protein_gene_names
ghttps://www.genenames.org/
bhttps://m.ensembl.org/info/genome/genebuild/gene_names.html
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genes. Since only a fraction of genes are expressed ("turned on”), the gene
expression profile defines the type and the activities of a cell at a certain
time. Mechanisms of gene expression control can occur at any step of the
gene expression but most commonly during the transcription process. Tran-
scription factors and microRNAs are key requlators of the gene expressions.
The Transcription Factors (TF) regulate the gene transcription ( increase
or decrease the amount of gene product of a gene). The microRNAs (miR-
NAs) regulate the gene expression at the post-transcription level by binding
to target mRNAs preventing their expression. Alternative splicing is a
regulation mechanism that enables the coding of multiple proteins (called
protein isoforms), instead of one. Lastly, the long non-coding RNAs (IncR-
NAs), still under investigation, are involved in several molecular functions
playing a key role in some cancer mechanisms.

e Disease: a general definition states the disease as any harmful deviation
from the normal structural or functional state of an organism. The abnor-
mal condition generates disorders in the whole organism or any of its parts.
Generally, the disease is associated with certain signs and symptoms and
differs in nature from physical injury. The disease process is the result of
complex dysfunctional mechanisms. As an example, a disease could alter the
normal pathways causing patho-phenotypes'.

e Virus: is a submicroscopic infectious agent that can multiply only within
the living cells of an organism. Consequently, a virus uses the chemical ma-
chinery of the living cells to continue to live and to reproduce itself. Host
specific viruses cause many common human infections and are also respon-
sible for several diseases. As examples, the common cold, caused by one of
the rhinoviruses, and the AIDS, caused by HIV, are virus. Viruses may have
their genetic material (DNA or RNA).

e Gene-disease association: (or simply a disease gene) it happens when a
gene or a gene product is involved in the diseases process. A mutated gene
which changes its expression may consequently change the produced proteins
(and/or its quantity), thus, drafting the basis of the dysfunctional process.
As example, a mutation in TP53 lead to several tumoral diseases such as
breast cancer, bladder cancer and lung cancer’.

e Disease Module: some diseases are caused by more than one faulty gene
product (disease gene or disease protein). Barabdsi et al.” have moved the
focus from the disease genes to their complex set of interactions: “a disease is
rarely a consequence of an abnormality in a single gene product but reflects the
perturbations of the complex intracellular network”. The disease module is
defined as the local neighbourhood of genes which linked to the same disease
interact together and alter the normal structure and the biological functions.

ihttps :
//www .genome . gov/about-genomics/fact-sheets/Biological-Pathways-Fact-Sheet
Jhttps://ghr.nlm.nih.gov/gene/TP53#conditions
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Drug: in pharmacogenomics, a drug is a chemical compound which by in-
teracting with specific molecules of the organism (e.g. enzymes or receptors
proteins) produces a therapeutic effects. A drug which binds to a receptor (a
protein family) change its molecular structure and its functionalities. This
change induces a signalling pathway within the cell or inhibiting the functions
of the receptor itself. The specific drug-induced alterations of the biological
processes contrast the disease-induced ones and thus causing a therapeutic

“fizing” effect.

We like to remark that in precision medicine® is fundamental to select those
set of drugs which contrast the disease-altered biological processes and have

a minimal or negligible impact on the other patient biological processes.

3. Biological Networks and public available resources

In this section, we present the most common biologicals’ networks (3.1)
and an exhaustive collection of biologicals’ databases (3.2).

3.1. Btiological networks

Nodes of a molecular network, usually represent genes, gene products
or biological functions while edges define the molecular connections be-
tween these entities. In the following, we describe the most common
types of biological networks providing a full explanation and a tabular
description:

3.1.1. Protein-Protein Interaction Network (PIN)

Protein-Protein Interaction Network (PIN), often referred as interac-
tome, is an undirected binary graph of Protein-Protein Interactions
(PPIs) where proteins are nodes and undirected edges are physical in-
teractions. Contrary to the common convention the PINs present an
ambiguity to keep in mind. The absence of an edge may imply that
does not exist the interaction between the two proteins or that the re-
lated lab test was not performed yet. Additionally, PIN’s nodes can be
decorated with categorical attributes representing biological knowledge
such as GO terms, diseases relationships and other proteins features as
domains. From the topological point of view, PINs have characteristics
similar to those of scale-free'’ networks'. As reported by Jeong et al.,
in PINs, the hubs are likely to be proteins which are essential for many
fundamental life processes. Another typical property of the PINs is its
modular organization.

kPrecision Medicine is an emergent approach to patient care that allows clinicians to
select treatments that are most likely to help patients based on a genetic understanding
of their disease.

IScale-free networks are characterised also by the presence of large hubs.

page 9
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PINs are composed of modules, subgraphs of proteins that tend to
collaborate together in order to accomplish a biological function. Those
modules play a key role in the life of an organism by enabling biological
processes and by constituting protein complexes.

The PINs are mainly used to identify key proteins or modules, es-
sential for the development of biological processes like diseases.” Discov-
ering such modules in the human PIN helps to understand how diverse
phenotypes might be linked at the molecular level. PIN and modules are
the key-concepts which allows clinicians to investigate on co-morbidity
and on drug repurposing.

We like to remark that, notwithstanding in the past decade were
witnessed systematic efforts to increase its coverage and accuracy, the
human PIN remains highly incomplete and noisy. © For the aforemen-
tioned reasons, it is still an active and open research field.

Nodes: Protein Edges: Physical interactions
Type: Undirected Weights: Binary

Nodes Attributes: Pathways, diseases, domains, families, tissues

Edges Attributes: Usually not present

3.1.2. Drug-Target Network (DTN)

A drug-target network is a bipartite undirected network where one set
of nodes are composed by drugs and the other set contains their targets
molecules. An edge/interaction is present when a drug has the tendency
to bind to a target, ~ a protein (e.g. GPCR) peptide or nucleic acid.
Furthermore, drugs can target several molecules at once causing also
adverse side effects to a patient.

Since one of the main use of DTN is in the field of drug repurposing,
many networks report also categorical attributes. These attributes con-
stitute additional knowledge as disease, proteins’ domains, and drugs’
pathway or categories. The DTN networks can be also expanded with
protein-protein and drug-drug interactions. The drug repurposing ap-
proaches leverage enriched DTNs - with the functional and modular
structures of the PINs - to achieve better performances.” ™

Another kind of network related to the DTN is the drug-drug in-
teractions (DDIs) network. In DDIs network, nodes are drugs, and the
edges represent a change, often adverse, in the effect that one drug has
on the target if combined with the other drug. For this reason, DDIs
are usually employed to identify drugs’ side effects and drive polyphar-
macy therapies. Similarly to diseases, it has been observed that several
drugs impact on the PIN neighbourhood of their targets. For example, a
drug can be engineered to produce beneficial effects by interacting with
proteins in the PIN neighbourhood of the diseases proteins.

output
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Finally, the concept of drug-target module, hypothesised by Cheng
et. al., " captures the tendency of proteins targeted by the same drug to
form a localised neighbourhood as it happens in the case of the diseases
modules. An interesting property observed in polypharmacy is: two
drugs have a therapeutic effect only if the drug-target modules overlap
with the disease module but no among them.

Nodes: Drugs, Proteins Edges: Physical /Functional interactions
Type: Undirected Weights: Binary

Nodes Attributes: Diseases, protein features, drug features

Edges Attributes: Side effects

3.1.3. Gene Expression Network (GEN)

A gene co-expression network is an undirected, often weighted, corre-
lation network where nodes are genes and edges represent significant
correlation in the expression between two genes. Gene nodes can be
decorated with categorical attributes adding biological knowledge as dis-
eases and GO-terms. GENs are typically constructed in two steps: in
the first step, a correlation measure (Pearson or Spearman coefficients,
Mutual Information, Euclidean Distance) is computed between each pair
of genes, by using their expression data (Microarrays, RNA-Seq). In the
second step, a significance threshold (a threshold cutoff or the Fisher’s
Z-transformation) is applied over the previously computed correlation
values in order to identify the co-expressed genes.

Studying GENs permits to identify functionally related genes or co-
expression module with key roles in biological pathways.

We want also to highlight as, conversely to the PPIs networks, the
gene co-expression ones, depend on the conditions (typically the tempo-
ral context) in which the samples have been collected.

Nodes: Genes Edges: Correlations of gene expression
Type: Undirected Weights: Real values

Nodes Attributes: GO-Terms, diseases

Edges Attributes: Usually not present

3.1.4. Gene Regulatory Network (GRN)

A gene regulatory network is a weighted, directed, bipartite network of
gene regulatory dependencies. The interactions are between a “regulator
molecule” (Transcription Factor; RNA; miRNA etc.) and a “regulated
molecule”, usually a gene. Nodes can either be characterised by other
categorical attributes. The GRN captures the complex work-flow of the
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gene regulation system. Studying the gene regulatory process allows the
researchers to understand how molecular mechanisms work, and thus,
identifying the key patterns and players which emerge in specific condi-
tions like a disease state.

Nodes: TFs, RNAs, miRNAs, IncRNA, Genes Edges: Biological interactions
Type: Directed ‘Weights: Real values

Nodes Attributes: GO-Terms, diseases

Edges Attributes: Usually not present

3.1.5. Brain Network

The connectome, also known as the brain network, is used to organ-
ise and represent information about functional or physical connectivity
among different brain regions. ” As often was observed in several bi-
ological networks, also in the brain one, it is possible to recognise the
scale-free topology.” Other studies have also found out that the con-
nectome exposes some similarities with the small-world network model
and have identified some recurrent structural motifs.” Moreover, a brain
network exposes modular structures related to cerebral functions™ as™
those that typically are present in the PINs’ networks.

To understand how the connectome was built, we must consider the
different techniques employed, to detect the brain’s zones and under-
stand how they interact one to another. The two most popular ones are
i) The structural Magnetic Resonance Imaging (sMRI or MRI) which
detects anatomical structures and provides a map of physical neural
connections and ii) The functional Magnetic Resonance Imaging (fMRI)
which allows to tracks the oxygen changes associated with blood flow
helping to build the brain’s activity map.

The analysis of brain networks led to great advancement in the re-
search areas related to degenerative brain-related diseases. As an exam-
ple, works™ related to the study of Alzheimer’s Disease, reports evidence
that the functional brain networks have structural properties that are
less similar than those of the small-world model. That discovery allows
to a better understanding that Alzheimer causes a disconnection among
the distant brain zones.

Nodes: Brain regions Edges: Physical connections
Type: Undirected Weights: Binary

Nodes Attributes: Usually not present

Edges Attributes: Usually not present

"M EFrom the structural perspective.

output
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3.2. Public available resources

Data collections (databases) constitute a grounding block for deep
learning methods. The network biology databases reflect the biolog-
ical/molecular information of the organism, presented in section 2.3,
by centralising them in one place. The databases can be classified in:
Primary databases are based on experimental results submitted by re-
searchers. They contain primary information (as, nucleotide or protein)
and annotations regarding, bibliographies, function, cross-references
to other databases, and so forth. Secondary databases summarise
the results from analyses (e.g. computational predictions) of primary
databases. These analyses allow finding common features of biolog-
ical classes, which can be used to classify unknown biological data.
Databases that contain biological or medical information, are usually
classified as secondary ones. However, many databases have integrated
both data from primary and secondary databases over the years and,
thus, their classification has grown uncertain.

It should be noted that the same biological information can be col-
lected in several databases maintained by different national or transna-
tional institutions: the National Institutes of Health (NIH) for the U.S.
maintains the PubChem database and the European Bioinformatics In-
stitute (EBI) for Europe maintain the corresponding one ChEMBL.

In adjunction to the original article (containing its data description,
structure and functionality of the database) exist dedicated journal issues
(e.g. The journal Nucleic Acids Research” ) which yearly reviews all the
recently updated and available biological databases.

We present in table 1 an exhaustive list of the publicly available
databases. The table reports for each database its name, a descrip-
tion of the contained data and three binary columns which identify the
primary databases and classify their content as features (attributes on
nodes or edges) or/and as associations (edges). The direct link to the
original resource is provided, but for readability propose it is available
only in the electronic format of the book. The table is organised by
groups of databases °: gene/proteins, diseases, drugs, gene expression,
gene regulation and pathways related data. Following the authors’ ex-
pertise and the recognised use in of the databases. The most important
databases have been underlined®.

"Freely accessible also on the Web

°Note that a database can be present in more than one group.

PDue to the several databases’ versions released during years keeping track of citations
in a precise way is a hard task. Thus, the underline must be considered advice.
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Database

Content description

Primary _Features

output

Associations Website

Gene/Protein Data

Uniprot protems additional information as domains, families and sequences , vos - Tink
Gene Ontology (GO)” collection of ontological terms (Go-Term) related to gene and gene products - yes R link
Human Protein Atlas human proteins’ distribution in cells, tissues, organs and cancer types - yes link
BioGRID large collection of protein protein interactions (PPT) ves - link
IntAct” large collection of protein protein interactions (PPT) yes - Jink
DIP collection of protein protein interactions (PPI) - - link
HPRD collection of human only protein protein interactions (PPT) ves - link
HuRI database of highly reliable PPIs yes - link
APID™ a database which contains PPIs collected from other several primary databases - - link
HIPPIE collection of protein protein interactions (PPT) - link
CLAIRE-COVID protein related data for COVID-19 tasks - yes link
Disease Data
ICD international classification of Diseases - yes - link
SNOMED modern disease taxonomy - yes - link
MeSH taxonomy of medical literature - yes - link
UMLS mapping among several medical terminologies - - link
DO diseases’ ontology and vocabularies with biomedical data - - link
HPO™ a phenotype ontology: contains symptom-discase associations - yes link
MalaCards data-mining based human disease knowledge-base - yes link
Orphanet European source for disease related data (i.e. symptom-disease associations) - yes link
DisGeNET large GDA collection: integrates multiple expert-curated and computational sources - - yes link
OMIM diseases” vocabulary and expert-curated GDAs’ collection yes - yes link
ClinVar collection of association between human variations and phenotypes - - yes link
PsyGeNET collection of GDAs for psychiatric diseases - - yes link
HuGE Navigator text-mining based GDA - - yes link
COSMIC™ collection of cancer related GDAs - - yes link
CID literature-curated associations between drugs, genes and diseases - - yes link
GWAS Catalog collection of GDA for gene variants from Genome-WAS yes - e link
GWASdb collection of GDA for gene variants from Genome-WAS yes - yes link
PheWAS™ collection of GDA for gene variants from Phenome-WAS yes - yes link
CLAIRE-COVID disease related data for COVID-19 tasks - yes yes link
Drug Data
DrugBank pharmaceutical knowledge-base. Useful for DTIs/DIs/DDAs and drug side effects B ves yes Tink
SIDER drug-side effect association collection - yes yes link
ChEMBL European manually-curated drug knowledge-base. Useful for DTTs yes yes link
PubChem American manually-curated drug knowledge-base. Useful for DTIs yes yes link
ChEBT collection and ontology of small chemical compound (e.g. drugs) - - link
TTD database of drug targets, targeted disease and pathway information - yes link
OFFSIDES database of drug-side effects associations - yes link
STITCH™ collection of validated and i predicted DTIs - - yes link
SuperPred™’ database of experi lidated and i predicted DTIs - - link
DGIdb'"" collection of DTIs collected from several sources - - link
TWOSIDES ™" collection of DTIs - - link
BindingDB' on of DTIs with affinity measurements ves - link
PharmGKB' collection of DTIs with genetic variants - - link
CTD database of literature-curated associations between drugs, genes and diseases (i.e. DDAs) - - link
Supert Target database of DTTs with information about side-cffects, pathways and Gene Ontology terms - ves link
Matador"" collection of physical and functional, or indirect, DTIs - - link
TDR targets collection of drugs-targets resource for neglected human discases - - link
DCDB" database of drugs combinations (e.g. DIs) - - link
RepoDB collection of repurposed drugs with indications (e.g. DDAs) - - link
CLAIRE-COVID drug related data for COVID-19 tasks - yes link
Gene Expression Data
GEO™ American public collection of gene expressions data ves ves - Tink
ArrayExpress' Furopean public collection of gene expression data, ves ves - link
TCGA repository of gene expression profiles associated with cancer yes yes - link
Gene ion Data
TransFAC™ database of regulatory interactions - yes yes Tink
GTRD"' database of transcription factor binding sites - yes - link
TRRUST manually curated collection of human and mouse regulatory networks - - yes link
miRTarBase collection of miRNA-gene associations - - e link
miRWalk™ database of miRNA-gene associations - - link
miR2Disease collection of miRNA- e associations - - link
HMDD' collection of miRNA-disease associations - - link
miRCancer” database of miRNA-cancer associations - - link
PhenomiR "™ miRNA knowledge-base and collection of miRNA-disease associations - link
dbDEMC miRNA-expression profiles in human cancers - - link
TCGA' collection of miRNA data in cancers - - link
IncRNASNP2™ database of miRNA-IncRNA associations - - yes link
LncRNADisease” database of IncRNA-disease associations - - yes link
LncRNA2Target” collection of IncRNA-protein associations - - yes link
Pathways Data
Reactome” European-hosted pathway database N ves B Tink
Japanese-hosted pathway databas - ves - link
WikiPathways® pathway database based on collaborative platform - yes - link
MSigDB database integrating pathways from other resources - yes R link
Pathway Commons™” database integrating pathways from other resources - yes - link
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4. Deep Learning for Interactome (I)

4.1. PPI prediction (PPIP)

Proteins own a key role in the biological processes. Having a complete
collection of PPIs of an organism is crucial for the many molecular net-
works’ studies (e.g. the Disease Gene Identification or the Drug-Target
Association Identification). Notwithstanding the time-consuming and
labour-intensive dedicated to the built of PPI detection systems, it is
still necessary to put efforts to complete the PPI maps of several or-
ganisms. The protein-protein interaction identification task may helps
to detect physical interactions which were not previously present among
the proteins of an organism. The protein-protein interaction network
(see Section 3.1.1), the Proteins, Gene, Gene Expression and Cells are
useful concepts presented in section 2.3.

Three main experimental approaches are used to detect human
protein-protein interactions: systematic experiments, literature cura-
tion, computational predictions. Systematic experiments, as Yeast two-
Hybrid (Y2H) and Affinity-Purification with Mass-Spectrometry (AP-
MS), are the most reliable approaches which provide diverse types of
PPIs: Y2H detects binary interactions and AP-MS detects one-to-many
(complexes) interactions.

Notwithstanding their accuracy, systematic approaches are prone to
identify false positives and false negatives. As noted by,” PPIs collec-
tions built on a scientific literature review are richer but exposes a lower
in quality since the adopted methods are error-prone and can be affected
by investigation biases. Computational approaches, on the other hand,
are inexpensive - if compared to the laboratory experiments - but due
to their synthetic nature, the produced predictions must be validated
with biological experiments. Several approaches were proposed in recent
years. The oldest, but also one of the most used one as a comparison,
is node2vec: a skip-gram based approach - proposed in 2016 by Grover
and Leskovec™ - which learn the nodes network representation (embed-
dings) leveraging only structural information. Kishan et al.”” (GNE)
and Luo et al.”" are based on a classic DNN approach. The most re-
cent ones ~ ' are based on GNN. HO-VGAE, proposed by Xiao and
Deng,”” is also based on graph variational auto-encoder (GAE). Here
the aim of the authors is to predict PPIs by improving the GCN’s ag-
gregation scheme in the GAE to explore higher-order neighbourhoods of
each node in the Human PIN. Moreover, they integrate L3 principle, a
recently discovered property of the Human PIN.”” In their comparison
evaluation on the Human’s PIN, HO-VGAE outperforms node2vec™ by
3.4% AUPRC. Similarly to the HO-VGAE, SkipGNN"" improves the
aggregation scheme to collect information from direct and second-order
neighbours. Has been shown that similarity in second-order PPIs can
be highly predictive of PPIs (i.e. L3 principle). In their compara-
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tive evaluation on the Human PIN, SkipGNN outperforms node2vec
by 14.8% AUPRC and 15.1% AUROC. Similarly to the HO-VGAE and
SkipGNN, HOGCN"" improve the aggregation scheme to collect infor-
mation from direct k-order neighbours. In their comparative evaluation
on the Human PIN, HOGCN outperforms node2vec™ by 15.7% AUPRC
and 15.6% AUROC and SkipGNN by 0.9% AUPRC and 0.5% AUROC.

All the aforementioned approaches use solely the PPIs as input data
with the exception of the method proposed by Kishan et al.”” (GNE)
which also use gene expressions to build the genes’ representation by in-
tegrating both the topological structure of the PIN and the gene expres-
sion. In their comparison evaluation on the yeast’s PIN, GNE outper-
forms node2vec by 6% in AUROC and 12% in AUPRC. Unfortunately,
these studies lack a common benchmark which permits a straight com-
parison. Each study, even if aligned from the point of view of the adopted
evaluation measures, uses a PPI dataset often different from the others
works. The most used evaluation measures are the AUROC and the
AUPRC, an exception is made by Grover and Leskovec® which uses
solely the F-1 measure. For an additional overview of this subfield of
studies please see the works of Lii and Zhou," Kovécs et al.

4.2. Essential Protein prediction (EPP)

Essential genes or proteins are molecular components performing key
biological processes for the growth and survival of an organism. Fur-
thermore, essential genes tend to be highly conserved in the evolutionary
path of common species. For this reason, essential proteins are employed
in the gene-disease associations’ discovery, drug development of antibi-
otics, synthetic biology and to assess the minimum set of the essential
genes needed for the survival of an organism (i.e. essentialome).

The traditional biological discovery path used to find essential genes re-
lies on time-consuming experiments as gene knockout, RNA interference,
antisense RNA (asRNA) and transposon mutagenesis.”””" From a bio-
logical network perspective, the essential genes tend to be hub nodes of
the PIN network. = Since the PIN tends to be a scale-free network, the
deletion of essential genes leads to the disruption of its connectivity and,
consequently, produces instability in the organism.”” However, if on the
one hand essential proteins are strongly related to network topology, on
the other hand, the noise and the incompleteness of the PINs limit the
performance of classic network-based prediction methods.”””" Several
computational approaches, based on deep neural network, were proposed
in recent years. The majority of them are based on the node2vec in
conjunction with other techniques as LSTM, CNN and GNN. M. Zeng
et al. propose an end-to-end model, based on node2vec and LSTM
to identify essential proteins by jointly integrate PIN, gene expression
and information on subcellular localization. The produced classification
of the essential proteins was tested on Yeast data using the F-measure,
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AUC, and AP measures. A similar approach was explored by M. Zeng et
al. which uses a CNN instead of the LSTM and by X. Zhang et al.
which concatenate node2vec proteins’ vectors and sequence data to feed
a fully connected multi-layer neural network (DNN). We like to note
that X. Zhang et al. improves the overall performance of the EPP by
exploiting protein sequence and topological features and by addressing
the imbalanced learning problem by using a cost-sensitive training func-
tion. EPGAT, proposed by J. Schapke et al.,”" is the most different one
both in terms of method and used data. EPGAT construct an attributed
PIN network to apply a method based on a graph attention neural net-
works where they used a weighted binary cross-entropy (CE) function.
The nodes of the PIN network are decorated with a feature vector based
on gene expression profiles, orthology information, and subcellular local-
ization. Even if the aforementioned methods are exhaustively evaluated
using several measures (e.g. Accuracy, Recall, Precision, AUROC and
AUPRC) they do not present a direct comparison with deep learning
techniques. The main baseline methods used for comparison are the de-
gree centrality and the Support Vector Machine but due to the use of
different PIN data, it is not possible to highlight a common benchmark.
For an additional overview of this subfield of studies please look at the
works of Li et al.”” and Zhang et al.

4.3. Protein Function Prediction (PFP)

As already stated, proteins carrying out critical functions of an organism.
However, the functions of almost all the proteins are largely unknown.
According to Shehu et al., " less than 1% of the proteins have reliable
and detailed annotations in the Universal Protein (UniProt) database.
Moreover, “fundamental information is currently missing for 40% of the
protein sequences deposited in the National Center for Biotechnology In-
formation (NCBI) database”. For the aforementioned reason and due
to the growing gap between the number of proteins being discovered
and their functional characterisation (in particular as a result of exper-
imental limitations), completing the collection of the proteins’ function
has become a fundamental research problem to address. The first ef-
fort made by researchers to overcome this problem was to organise the
proteins’ functions in a structured and standardised way. The Gene
Ontology (GO)? is a collection of three protein’s functions hierarchical
ontologies distinct by the biological aspect: Cellular Component, Biolog-
ical Processes and Molecular Functions. Secondly, proposing a reliable
prediction of protein function through computational methods has be-
come crucial. In this direction, GraphSAGE, proposed by W. Hamilton
et al.,”" presents an inductive framework that leverages node feature in-
formation to learn node embeddings. In this work, the authors use a PIN
network only to prove the efficacy of their work. In 2018, M. Kulmanov

9See section 3.2 for additional details.
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et al. propose DeepGO "’ a complex end-to-end deep learning method
which exploits protein sequence features, topological cross-species PIN
features and dependencies among GO classes to predict the proteins’
function. The method is based on the concatenation of two Deep Neural
Networks which combines the proteins’ sequences and network’s rep-
resentation respectively. DeepNF, by Gligorijevi¢ et al., propose a
network fusion method based on Multimodal Deep Autoencoder (MDA)
to extract high-level features of genes from multiple heterogeneous in-
teraction networks (six different Yeast protein-protein networks). The
method uses the Random Walk with Restart (RWR) to build a high
dimensional node embedding which, once it is reduced using a Multi-
modal Autoencoder (MDA), it is used into an SVM classifier to predict
the proteins’ function. Lastly, K. Fan et al. proposes Graph2GO, a
model to predict protein functions (GO-terms) exploiting a protein se-
quence similarity network and a PIN with node attributes (amino acid
sequence, subcellular location, and protein domains). The model uses
two variational graph auto-encoders (vGAEs) to learn latent representa-
tions for each protein and successively predict proteins’ functions with a
DNN. Graph2GO improves by 10.5% and 3.33% the micro-AUPRC and
macro-AUPRC respectively when compared to deepNF. All works in the
area use a combination of PPIs with attributes and normally prefer to
use the precision, the recall and the F-measure as comparison metrics.
To complete the overview of this subfield of studies it is also possible to
look at the works of Shehu et al., "~ R. Bonetta and G. Valentino. The
protein-protein interaction network (see Section 3.1.1) and the Proteins,
PPI, Gene and Cells concepts (see Section 2.3) can be helpful concepts
to better understand this section.

4.4. Gene-Disease association Prediction (GDAP)

The disease-gene identification consists of finding the gene or gene prod-
uct involved in the origin of a genetic disease (i.e. disease gene). Tradi-
tional ways to assess the role of genes in diseases involve time-consuming
and expensive’ analysis such as Linkage Analysis and Genome-Wide as-
sociation studies (GWAS).

Genome-Wide association studies (GWAS) have led to large col-
lections of disease-gene associations available in public databases like
OMIM ™ and DisGeNet."~ The identification of disease genes provides
useful insights to understand disease mechanisms, design new therapies,
improve disease prevention approaches and make an accurate risk fac-
tors evaluation. For this reason, computational methods in this area of
research have become more and more prominent and widely proposed.

The computational approaches that laying in this research area are
mainly based on GNN and Skip-Gram using PPI and GDA data with en-

"https://wuw.genome.gov/27541954/dna-sequencing-costs-data/

output

page 18


https://www.genome.gov/27541954/dna-sequencing-costs-data/

July 11, 2022 14:18 ws-rvIx6 World Scientific Review Volume - 9in x 6in output page 19

4. DEEP LEARNING FOR INTERACTOME (I) 19

riched features. Agrawal et al. uses node2vec and a logistic-regression
to study how latent network structures of the Human PIN are corre-
lated with the disease modules predictability. In HerGePred '~ (HDGN)
a heterogeneous network is built by combining four types of relation-
ships: disease-gene, disease-symptom, gene-GO terms, gene-gene (PPI).
Then it is applied node2vec to learn the nodes embeddings. Finally,
two distinct disease-gene rankings are produced leveraging the cosine-
similarity and an RWR based approach. Similarly to DeepWalk and
node2vec, SmuDGE perform random walks on heterogeneous net-
works (composed by PPI, disease-phenotypes and gene-phenotypes asso-
ciations) and to then apply the Skip-Gram model to learn the diseases’
and genes’ representations. SmuDGE use two independent methods:
i) an unsupervised method based on the cosine-similarity between em-
bedding vectors and the query disease vector; ii) a method based on a
deep neural network which uses the genes’ and diseases’ embeddings to
perform the prediction. Another study based on node2vec is the work
proposed by Ata et al. where they enrich the generated embeddings
with around 500 gene features collected from Uniprot. The enriched rep-
resentation is used to train several binary classification models: SVM,
generalized linear model (GLM), Random Forest (RF) and kNN. Accord-
ing to the authors, N2VKO outperforms plain node2vec by roughly 2.6%
AUROC on six diseases. In HNEEM, ' “the authors construct a hetero-
geneous network based on gene-disease associations, gene-chemical asso-
ciations and disease-chemical associations. Several models are then ap-
plied to learn different node embeddings: node2vec, DeepWalk, Higher-
Order Proximity Preserved Embedding (HOPE), semi-supervised depth
model Structural Deep Network Embedding (SDNE), * Graph Factor-
ization (GF) and Laplacian Eigenmaps (LE). Finally, they pre-
dict the disease-gene association using a random forest based approach.
The method presented by Zhu et al. uses a cascade of deep meth-
ods (DeepWalk with a graph convolution layer and a three-layers fully
connected network) to predict the disease-gene associations. The pre-
sented approach use a heterogeneous network that integrates a gene-
gene network, disease-disease network and gene-disease network to out-
performs the prediction made by HerGePred by 11.7% AUPRC. Hete-
Walk ' ° performs the Skip-Gram model on meta-path controlled random
walks which explore a weighted heterogeneous network of PPIs, miRNA-
miRNA, disease-disease, gene-disease, gene-miRNA, miRNA-disease as-
sociations. Given a query disease, HeteWalk ranks genes according to
the cosine similarity between their representations and the given dis-
ease vector. GCN-MF '~ extracts disease and genes’ features using the
principal component analysis (PCA) and matrix factorisation methods
on prior biological knowledge of diseases and genes. These features are
then used to build a similarity network which in conjunction with the
genes’ features are used to train a GCN model. A slightly different ap-
proach dgMDL is presented by Luo et al. The method, based on a
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multi-modal deep belief net (DBN) first constructs a gene-gene similarity
network and a disease similarity network based on PPIs and (GO-)terms
data respectively. Then, node2vec is applied to those networks to gen-
erate their latent representations. The generated embeddings are finally
jointly used into a two-level DBNs. One of the most recent approach
is the Random Watcher Walker RV, Madeddu et al. proposes an
unsupervised deep learning method that exploits both functional and
connectivity patterns to predict the gene-disease associations. To do so,
RW? collects second-order random-walk made over the gene attributes
of the humans’ PIN to learn, a Skip-Gram based attributes representa-
tions. The final prediction is made using attributes’ representation which
encompasses both structural and functional connectivity. The proposed
framework allows to integrate multiple sources of information without
manipulating the original network topology producing promising results.
CIPHER-SC ““ uses an approach based on a Graph Convolution on a
Context-Aware Network with Single-Cell Data. The heterogeneous net-
work is composed by ontological associations and biological relationships
from both a public databases and single-cell data. The node2vec nodes’
representations are used into a deep neural network made with one GCN
and one DistMult “" layer. Authors compared CIPHER-SC compared
to methods present in literature (HerGePred, SmuDGE and GCN-MF)
achieving an increment up to 8.02% in the AUROC and 17.01% in the
AUPRC. Finally, HO-VGAE"™ and SkipGNN, "~ described in Section 4.1,
improves the GNN’s aggregation scheme to predict gene-disease associa-
tions. In their comparative evaluation on the GDAP problem, SkipGNN
outperforms node2vec™’ by 8.7% AUPRC and 7.8% AUROC. HOGCN
outperforms SkipGNN by 2.6% AUPRC and 2.4% AUROC.

It is worth noting that also this prediction problem is characterised
by the absence of a sharp benchmark. All the methods can be dis-
tinguished mainly by the used data rather than the computational ap-
proach. Despite that node2vec, AUROC and AUPRC represent the de-
facto baseline and measures to compare with. To complete the overview
of this subfield of studies it is also possible to look at the works of Luo
et al., ~" Kaushal et al.

5. Deep Learning for Network Pharmacology (NP)

5.1. Drug-Target Interaction Prediction (DTIP)

The drug-target association prediction is the task that consists in finding
a molecule, usually a protein, which is bounded to a drug. Exist sev-
eral wet-lab experiments to assess drug-target associations but they are
extremely expensive and time-consuming. The identification of drug-
target interactions is crucial for drug discovery and drug repurposing
and thus to design new therapies and develop Precision Medicine.

The most notable methods which rely on deep neural network tech-
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niques are the ones proposed by Zong et al. and Wan et al.

The first method “' is a similarity-based drug—target one which first
constructs a heterogeneous network of drug—target, drug-disease and dis-
ease—target associations. Then, the DeepWalk method is applied to
the network to build nodes’ representation. Authors propose two rule-
based inference methods to predict new drug-target associations: a drug-
based similarity inference (DBSI) and a target-based similarity inference
(TBSI) ones. The former, DBSI, predicts a new drug—target association
(d;, t1) if the drug d; is similar to the drug d; and exist an association
among the drug d; and the target ¢;. On the other hand, TBSI predicts
a new drug-target association (d;, ¢5) if exist an association among the
drug d; and the target ¢; and the target t; is similar to target ;. The
proposed method mainly take advantage of the topological structure of
biological networks to improve the predictions’ performances.

NeoDTI “° is an end-to-end model to predict drug-target interactions
from heterogeneous data. The method, first, constructs a network com-
posed of other eight ones: drug-drug structure-based similarity, drug-side
effect, drug-target, drug-drug, drug-disease, protein-protein sequence-
based similarity, protein-disease and PIN. The proposed deep learning
neural network framework takes in input the heterogeneous network
to reconstruct the original eight networks adjacency matrices. Finally,
NeoDTT predicts drug-target interactions relying on the reconstructed
network matrices.

Lastly, SkipGNN"" and HO-VGAE,"" described in Section 4.1, im-
proves the GNN’s aggregation scheme to predict drug-drug interactions.
In their comparative evaluation on the DTIP problem, SkipGNN outper-
forms node2vec™’ by 15.7% on AUPRC and 20.2% on AUROC. HOGCN
outperforms SkipGNN by 0.9% on AUPRC and 1.2% on AUROC.

The main advantages of the proposed methods are the integration
of several sources of information to extract non-linear patterns from the
data. AUROC and AUPR are the most used metrics in this research
field. For an additional overview of this subfield of studies please look
at the works of Fzzat et al.,””” Bagherian et al. and Abbasi et al.

5.2. Drug-Disease Association Prediction (DDAP)

A drug-disease association (also named Drug Repurposing) is a synthetic
representation of the therapeutic effect which a drug has on a certain
disease. It is important to note that a disease is a complex process which
has an impact on an organism by modifying its biological processes and
thus must be distinguished from the drug-target interaction. Note that
the drug discovery process, where a new drug is developed from scratch,
is different from the drug repurposing one. Drug discovery is a time-
consuming and expensive process while the repurposing process of an
existing drug may drastically reduce costs and time of drugs’ validation
especially if it is addressed by computational approaches.
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The first solution to DDAP was proposed by Zeng et al. with
DeepDR. DeepDR, is a network-based deep-learning approach for
drug repurposing which uses several biological networks: drug-disease,
drug-side-effect, drug-target and seven drug-drug networks. At first,
DeepDR generates the low-dimensional representations capturing highly
non-linear patterns (drugs’ embeddings) by using the DeepNF model
(presented in subsection 4.3) on 9 drug-related networks. Then, the
learned drugs’ embeddings and drug-disease associations are used into a
collective variational autoencoder ~~ to predict novel drug-disease associ-
ations. Similarly the approach of Gysi et al.” learn diseases’ and genes’
representations applying the Decagon model (presented in subsection
5.3) on four associations networks (protein-protein, drug-target, disease-
protein, and drug-disease associations) to predict the drug-COVID19
associations. Lastly, Karimi et al. present a reinforcement learning-
based approach, HVGAE. The method learns diseases’ and drugs’
embeddings using a hierarchical variational graph auto-encoder with at-
tentional pooling on PPI, gene-disease and disease-disease networks. The
learned representations are used into a reinforcement learning model to
identify the drug combinations which maximise the therapeutic efficacy.
This work addresses the challenging problem of finding clinical indica-
tions for a set of drugs instead of repurposing of a single drug as in the
aforementioned works.

The most used metrics in this domain are the AUROC and AUPRC.
Unfortunately it is not possible to recognise a common benchmark. An
additional overview of this domain is presented in the works of Xue et
al. and Jarada et al.

5.3. Drug-Drug Interaction Prediction (DDIP)

The combined interactions of two or more drugs with individual biologi-
cal processes may cause unexpected and critical health complications.
Those complications, called adverse drug reactions (ADRs), are danger-
ous for the patient and expensive for the health system. A significative
number of hospital admissions and medical errors are due by DDI.

Notwithstanding the high demanding for improving our understand-
ing of DDIs, the current known side effects of those interactions are
less than 1% of the total *® and their prediction by clinical and wet-lab
experiments are extremely expensive and hard to carry out.

For the aforementioned reason, Drug-Drug Interaction detection is
a relevant task necessary for the success of patients’ treatments. Sev-
eral computational classic machine learning approaches have been de-
veloped, """ the only three methods that can be highlighted as deep
based ones are Decagon, *” SkipGNN"" and HO-VGAE.

The authors of Decagon presents an end-to-end multimodal graph
auto-encoder approach for predicting drug-drug associations and their
side effects. The input of the model is a multimodal (heterogeneous)
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graph composed by protein-protein interactions, drug-protein target in-
teractions and polypharmacy side effects. The drugs are the nodes and
each side effect is an edge of a different type. The method is based on a
novel convolutional neural network for multi-relational link prediction.
Decagon addresses the problem of polypharmacy to find side effects of
drug combinations. A different task to the one of finding a combined
clinical treatment as done by the work of Karimi et al. (presented in
details in subsection 5.2).

HO-VGAE™ and SkipGNN,"” presented in Section 4.1, improves the
GNN’s aggregation scheme to predict drug-drug interactions. In their
comparative evaluation on the DDIP problem, SkipGNN outperforms
node2vec”’ by 6.5% on AUPRC and 7.7% on AUROC. HOGCN outper-
forms SkipGNN by 3.1% on AUPRC and 2.5% on AUROC.

6. Deep Learning for other biological problems (BIO)

6.1. miRNA-disease association prediction (MDAP)

The miRNA-disease association prediction (MDA) is the task of identi-
fying the interactions between microRNA (miRNA) and a disease. miR-
NAs play a key role in gene regulation with an important impact on bio-
logical processes and disease mechanisms. Several studies have shown the
usefulness of miRNA-disease associations for personalised diagnosis and
drug development. Biological methods to assess miRNA-diseases as-
sociations are reverse transcription-polymerase chain reaction, northern
blotting and micro-array profiling. However, these experiments as of-
ten happen in the biological domain, are expensive and time-consuming.
For this reason, applying computational methods, mainly based on CNN
and GNN, will benefit the identification of new associations.

Xuang et al. present two works, namely CNNMDA and CN-
NDMP, ™ both based on a CNN. To overcome the limitation of classic
computational methods of the area, the authors embed a higher num-
ber of miRNA-diseases associations. The two methods mainly differ
from the input data processing step needed by CNN. To extract net-
work representations, CNNMDA uses the non-negative matrix factoriza-
tion (NMF) and CNNDMP uses RWR. MDA-CNN'"" extracts network-
based features by applying an auto-encoder to a three-layer complex
network which includes disease similarity network, miRNA similarity
network and protein-protein interaction network. MDA-CNN predicts
the miRNA-disease associations with a CNN which uses the learned low-
dimensional representations as input. The authors of HGCNMDA
propose a method based on a heterogeneous network of human PPIs,
miRNA-disease, miRNA-gene, disease-gene associations. The method
first generates the genes’ embeddings by applying node2vec to the hu-
man’s PINs. Then, it uses a graph convolutional layer for every network
in conjunction with the learned node embeddings. Finally, HGCNMDA
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averages the resulting GCN'’s representations to predict miRNA-disease
associations in a link prediction setting. The first step of NIMCGCN

is based on the construction of miRNA-disease similarity networks. A
graph convolutional networks (GCN) method is used to learn miRNA
and disease latent representations. Lastly, the representations are used
by a neural inductive matrix completion (NIMC) model to generate
an association matrix which allows predict miRNA-disease associations.
Another GCN based method (FCGCNMDA) is presented by Li et al.

It first constructs a complete network in which nodes represent miRNA-
disease pairs. Then the miRNA-disease network along with a feature ma-
trix (i.e. miRNA-disease association scores as node weights) are used by
a two-layer graph convolutional networks (GCN) to predict new miRNA-
disease associations. Lastly, GAMEDA " is a graph auto-encoder based
model which first, collect the associations between miRNAs using a bi-
partite graph. The projected (in the same vector space) miRNAs’ and
diseases’ nodes are then processed by a graph auto-encoder (GAE) to
learn dense representations. Finally, GAEMDA uses the miRNAs’ and
diseases’ embeddings with a bilinear decoder to reconstruct and predict
new miRNA-disease associations.

The reference metrics used by these works are the AUROC and
AUPRC. Generally, the works are not going self compare with the other
methods in the same field of research. MDAP, as a new area of research,
suffers by the absence of common benchmarks and the availability of
comprehensive literature reviews.

6.2. Disease Analysis (DA)

The discovery of the mechanisms of a complex disease, such as cancer or
tumours, is dependent by the underlying interconnected molecular het-
erogeneous processes. In this context of analysis, GDAP methods, based
solely on the analysis of the organism’s PIN, generally fail to identify the
condition-specific disease drivers. In order to identify the drivers specific
of a disease subtype or a patient, several works successfully integrate
gene expression profiles with network biology. This integration helps
clinicians to make a better diagnosis and select a patient personalised
treatment. In this section, we discuss recent works for the analysis of
specific disease-related conditions using gene expression data and net-
works.

Rhee et al. solve the patient classification problem proposing a
method based on relation network (RN) and graph convolution neural
network (graph CNN). The method captures localised patterns of asso-
ciating genes with graph CNN, and then learn the relationship between
these patterns with the RN. The proposed framework is applied to the
human PIN and gene expression profiles of patients with breast cancer
level 3 to classify the subtype of breast cancer according to the PAM50
scheme. The work proposed by Schulte et al. tackles the problem of
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combining multiple omics data types into a single learning model. Their
model uses gene expression data for cancer gene prediction by apply-
ing a graph convolutional network (GCN). The used attributed PIN is
composed of nodes which have features vector extracted from genes’ ex-
pression profiles in specific cancer condition. DeepDriver " uses a Deep
CNN applied to a gene-gene similarity network and a gene features vec-
tor derived from gene expression data. Authors focused their approach
on cancer specific genes. iISOM-GSN use the self-organizing maps
(SOMs) algorithm to generate a gene-gene similarity network from gene
expression data. Then, it enriches the adjacency matrix by integrating
each gene with features values of gene expression, DNA methylation and
copy number alteration (CNA). Finally, they use the enriched obtained
data into CNN to predict the disease states.

Due to the recent introduction of this research field and the limited
amount of works present in the area is difficult to clearly identify a
common set of evaluation measures and a common benchmark.

6.3. Brain Analysis (BA)

The brain network (i.e. connectome see section 3.1.5) analysis is a new
emergent field of study. Typically it is used to understand the mech-
anisms of diseases as schizophrenia, depression, Alzheimer and multi-
ple sclerosis. The connectome is characterised by complex interde-
pendencies between brain regions. The relation between brain network
structures and their functional roles is partially known. For this reason,
applying computational approaches becomes necessary to improve their
current understanding.

Two deep neural network-based methods can be identified in this
field. The first one, proposed by Rosenthal et al., uses node2vec
to learn the low-dimensional network representations of brain regions
to study their latent relationships. The latter, by Lee et al., ad-
dresses the problem of analysing the natural organisation of the brain
networks. The method uses a Graph Auto-Encoder (GAE), with non-
negative weight constraints, to a “structural” brain network to learn
low-dimensional representations of the nodes (brain zones). The non-
negative weight constraint in the GAE is the most innovative contribu-
tion proposed by this method whom adds interpretability capabilities to
the model.

We like to note that this filed of research is characterised by custom
qualitative examinations rather than a clear benchmark and a precise
set of evaluation measures.

7. Conclusion and future works

This chapter summarised the concepts, datasets, and techniques used
by deep learning applications in network biology. A complete overview
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of presented works in respect to the used base methods, data and eval-
uation measures are summarised in table 7. The reviewed works have
shown that now it is possible to diving in the biological networks’ com-
plexity in a more detailed way. Despite the impressive results achieved
by deep learning techniques, future works will need to cope with data
and methods issues.

On the one hand, even if recent advances in high-throughput tech-
nologies have produced a huge and growing quantity of biological data.
This data are affected by quality and reliability problems:

- Incompleteness: the biological networks are characterised by high
incompleteness. As shown in table 7, the most used network, with its
attributes, is the Human PIN known for only its 20%. This data
incompleteness strongly limits deep learning methods’ performances.

- Bias: biological knowledge suffers from the study bias. Several PPIs
collections are strongly biased towards the most studied genes leading
to network structures that are not representative of the topology of the
complete Human PIN.” Bias in biological networks is a critical issue be-
cause it influences the quality of the patterns extracted by network-based
methods; hence, their performance. Recently, Luck et al.”" presented a
Human PIN obtained by a systematically and unbiased proteome-wide

study.
- Noise: both literature-based data and high-throughput technologies
are prone to generate false positives and false negatives.”™ For this

reason, biological interaction datasets must be completed by an evi-
dence/reliability scores.”™
- Lack of negative knowledge: is common practice in the biomedical
literature (due to practical and economical reasons), to do not discuss the
biological entities which are not interacting. The absence of this “nega-
tive” results create uncertainty about the absence of the interaction or
the lack of knowledge about it.”” 7" Machine learning methods achieve
better performances if they can learn both from positive and negative
samples. To solve this issue, negative knowledge is randomly sampled or
generated with biological heuristics. However, these generation strate-
gies may force to consider a not known positive interaction as a negative
one, leading to lower quality of the model and by overestimating the
performances.

On the other hand, the future development of the computational
methods in network biology must face the following open challenges:
- Heterogeneous data: heterogeneous data in network biology can
be both nodes’ and edges’ features or whole additional networks. In
the literature, given the complex and interconnected nature of biomed-
ical entities and the aforementioned lack of knowledge in the biological
datasets, there is no agreement on how heterogeneous data must be ap-
propriately handled. As we have seen, several methods can differ solely
on the techniques used to tackle this aspect. Modelling and integrating
heterogeneous information, even if it is a difficult task, will be the key

output

page 26



July 11, 2022 14:18 ws-rvIx6 World Scientific Review Volume - 9in x 6in output page 27

7. CONCLUSION AND FUTURE WORKS 27

strategy to achieve better results.
- Imbalance learning: problems in network biology are usually ex-
tremely imbalanced by their nature (e.g. PPIP). If not properly handled,
this imbalance will affect the performances by producing overestimated
evaluations.
- Biological heuristics: Several graph deep learning methods in net-
work biology are inspired by techniques developed for social networks.
However, biological networks rely on different topological patterns. Re-
cent studies”” are facing this challenge by integrating the L3 principle
rather than the social homophily.

To conclude, graph deep learning approaches in network biology rep-
resents a powerful tool to unchain the hidden biology, medicine and
pharmacology knowledge.
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