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Abstract. Nowadays assuring that search and recommendation systems
are fair and do not apply discrimination among any kind of population
has become of paramount importance. Those systems typically rely on
machine learning algorithms that solve the classification task. Although
the problem of fairness has been widely addressed in binary classification,
unfortunately, the fairness of multi-class classification problem needs to
be further investigated lacking well-established solutions. For the afore-
mentioned reasons, in this paper, we present the Debiaser for Multiple
Variables, a novel approach able to enhance fairness in both binary and
multi-class classification problems. The proposed method is compared,
under several conditions, with the well-established baseline. We evaluate
our method on a heterogeneous data set and prove how it overcomes the
established algorithms in the multi-classification setting, while maintain-
ing good performances in binary classification. Finally, we present some
limitations and future improvements.

Keywords: Machine learning · Bias and fairness · Multi-class classifi-
cation · Preprocessing algorithm.

1 Introduction

Bias impacts human beings as individuals or groups characterized by a set of
legally-protected sensitive attributes (e.g., their race, gender, or religion). If
not managed, the inequalities reinforced by search and recommendation algo-
rithms can lead to severe societal consequences, such as discrimination and un-
fairness [14]. Both search and recommendation algorithms provide a user with
ranked results that fit and match their needs and interests. Both tasks often
convey and strengthen bias in terms of imbalances and inequalities, primarily if
they rely on or encompass machine learning algorithms as those which solve clas-
sification problems. For this reason, assuring that search and recommendation
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systems are fair and do not apply discrimination among any kind of popula-
tion has become of paramount importance, mainly because they are pervasive
in several domains (e.g., justice [26], health care [30], education [4], etc.).

Over the years, different methods have been proposed to mitigate bias at
several levels of data processing. However, we notice that the multi-class classifi-
cation problem is still not effectively addressed, even if it is widely adopted and
constitutes a building block for personalization and search systems in several
domains [21,29,16].

For this reason, in this paper, we present the Debiaser for Multiple Variables
(DEMV). This novel approach is a generalization of the Sampling algorithm
proposed by Kamiran et al. in [17]. DEMV is model and data-agnostic, allowing
its introduction in already existing systems without particular effort and without
introducing structural changes. The DEMV enhances fairness both in binary and
multi-class classification problems, handling any number of sensitive variables
and with any classifier. We exhaustively show, with different datasets, that our
method outperforms the state-of-the-art methods in the multi-class classification
while achieving comparable performances in the binary one.

This paper is structured as follows: in Section 2, we recall some background
knowledge used in our work and describe some bias mitigation methods in the
context of multi-class classification problem; in Section 3, we describe in detail
the proposed approach; Section 4 is dedicated to the experimental analysis that
has been conducted both in binary and multi-classification problems; finally,
Section 5 describes some points of improvement of our approach and concludes
the paper.

2 Background Knowledge and Related Work

In the last ten years, the study of bias and fairness in machine learning acquired
considerable relevance in literature. Many definitions and metrics have been
proposed to address different kinds of bias and fairness [23]. In this section,
we recall the definition of fairness we use in this paper and then, we describe
the related work in the context of bias mitigation in multi-class classification
problem.

2.1 Fairness definition

Demographic (Statistical) Parity (DP) [20,11] is one of the most used definitions
of group fairness [23], which assumes the independence among the predicted
positive label yp and the sensitive variables S1, . . . , Sn.

Formally, let Ŷ be the predicted value and S be a generic binary sensitive
variable where S = 1 and S = 0 identify the privileged and unprivileged groups,
respectively. A predictor is fair under DP if:

P (Ŷ = yp|S = 1) = P (Ŷ = yp|S = 0) (1)
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A different formulation for the DP is the Disparate Impact [12], which considers
the ratio among the two probabilities:

0.8 ≤ P (Ŷ = yp|S = 1)

P (Ŷ = yp|S = 0)
≤ 1.2 (2)

In this case, following the 80% rule [12], the value must be between 0.8 and 1.2
in order to have fairness. DP falls into the We Are Equal (WAE) metrics family,
which holds that all groups have similar abilities concerning the task (i.e., have
the same probability of being classified in a certain way) [13].

2.2 Related Works

Over the years, many methods have been proposed to mitigate bias at differ-
ent levels of data processing [23,7]. In particular, we distinguish among pre-
processing methods, which modify the data to remove the underlying bias; in-
processing methods, which change the learning algorithm to remove discrim-
ination during the model training process; post-processing methods, which
re-calibrate an already trained model using a holdout set not used during the
training phase. In general, the sooner a technique can be applied, the better
because it can be chained with other bias mitigation methods in the later pro-
cessing phases [31,1].

Among pre-processing methods, one widely adopted is the Sampling algo-
rithm proposed by Kamiran et al. in [17]. Its method rebalances both privileged
and unprivileged users in the case of binary classification with a single sensitive
variable.

Formally, let be S the sensitive variable with {w, b} ∈ S representing the
privileged and unprivileged groups, respectively, and let be Y the target label
with {+,−} ∈ Y defining the positive and negative outcomes. The sampling
algorithm first splits the original dataset into four groups:

– Deprived group with Positive label (DP): all instances with S = b ∧ Y = +;
– Deprived group with Negative label (DN): all instances with S = b∧Y = −;
– Favored group with Positive label (FP): all instances with S = w ∧ Y = +;
– Favored group with Negative label (FN): all instances with S = w ∧ Y = −.

Then, the algorithm balances the groups iteratively until their observed sizes are
equal to their expected ones.

We like to note that very few methods are able to mitigate the bias in
the multi-class classification problems. Among those are the two post-processing
methods proposed by Krishnaswamy et al. [19]. They start from the definition
of a set of deterministic classifiers H and a class of groups G made by elements
in the form g : N → {1,−1}, where g(i) = 1 iff item i is in group g, -1 otherwise.
For each group g, they identify the best classifier h∗

g as the one assuring the high-
est accuracy for that group. Then, they define fairness as a constraint among
the accuracy of each possible classifier and the optimal one for each group g.
The core difference between the two proposed approaches lays in the definition
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of G. The first one, named Proportional Fairness (PF), considers each possible
subset of the dataset, so there is no limitation on G. The second method, BeFair
(Best-effort Fair), considers instead each linearly separable group (i.e., if g ∈ G,
then g and N\g are linearly separable). To solve the unfairness of the input
classifier, both methods optimize a MinMax function.

An in-processing method that solves unfairness in multiple classification set-
tings is the one presented by Agarwal et al.[2]. The algorithm addresses two
definitions of fairness at once: Demographic Parity and Equalized Odds [15].
The authors formulate such definitions as linear constraints and then build an
Exponentiated Gradient reduction algorithm that yields a randomized classifier
with the lowest error subject to the desired fairness constraints. Also, in this case,
the method follows a MinMax approach in which the players try to minimize the
given constraint and maximize the classifier’s score. Although the authors study
their algorithm mainly in binary classification problems, they also show how it
can be applied to regression and multi-classification problems.

Note that most of the methods in the literature are primarily designed for
binary classification problems, and the minority of them apply during the pre-
processing phase. On the contrary, our proposed method is able to work in the
pre-processing stage. Since it can be used at the beginning of the processing
phase, it can be possibly chained with other algorithms in later steps. Moreover,
it natively supports multi-class classification and multiple sensitive variables in
an affordable yet successful way, as is shown in the experimental section 4.

3 Debiaser for Multiple Variables (DEMV)

In this section, we describe in detail Debiaser for Multiple Variables (DEMV),
a bias mitigation method for multiple sensitive variables in the classification
context.

The main idea behind the proposed method is that all the possible combina-
tions of the sensitive variables values and of the label’s values for the definition
of the sampling groups must be considered. We approach the problem by recur-
sively identifying all the possible groups given by combining all the values of the
sensible variables with the belonging label (class). For each group, we compute
its expected and observed sizes, defined respectively as:

Wexp =
|{X ∈ D|S = s}|

|D|
∗ |{X ∈ D|L = l}|

|D|
(3)

Wobs =
|{X ∈ D|S = s ∧ L = l}|

|D|
(4)

Where S = s is a generic condition on the value of the sensitive variables1 and
L = l is a condition on the label’s value. If Wexp\Wobs = 1 implies that the group
is fully balanced. Otherwise, if the ratio is less than one, the group size is larger

1 The variables can be binary, discrete or categorical ones
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than expected, so we have to delete a random element from the considered group.
Instead, if the ratio is greater than one, the group is smaller than expected, so we
have to duplicate an item from the group by random sampling. For each group,
we recursively repeat this operation until Wexp\Wobs converge to one.

The group-balancing operation is implemented by the SAMPLE function,
whose pseudo-code is depicted in listing Algorithm 1. This function takes as
input the group g and the expected (Wexp) and observed size (Wobs). The core
of this algorithm is a while loop that checks if the value of Wexp\Wobs is different
from 1. If so, the algorithm selects a random index in the range of (0, length(g)−
1) and duplicates the corresponding item if Wexp\Wobs > 1 or removes it if
Wexp\Wobs < 1. Finally, the algorithm returns the sampled group when the
while condition becomes true.

Algorithm 1: Pseudo-code of SAMPLE

Input: (Group g, Expected size Wexp, Observed size Wobs)
Output: Balanced group g

1 while Wexp\Wobs ! = 1 do
2 i = random value ∈ {0, . . . , length(g)− 1}
3 if Wexp\Wobs > 1 then
4 duplicate item at position i in g

5 else if Wexp\Wobs < 1 then
6 remove item at position i from g

7 recompute Wobs

8 return g

The SAMPLE algorithm is invoked inside DEMV whose pseudo-code is
showed in listing Algorithm 2. The main DEMV function takes as input the
dataset D, the categorical sensitive variables S1, . . . , Sn, the label L and other
parameters useful for the recursion: a counter i initially set to 0, an array G
initially empty and a boolean condition initially set to true. Lines from 2 to 9
define the base condition of the function. They check if the counter i is equal
to the number of sensitive variables. If so, the algorithm iterates the possible
values of the label and creates the corresponding group g. Then, it computes
the expected and observed sizes and it balances the group using the SAMPLE
function (listing Algorithm 1). Finally, the approach adds the balanced group gb
to the array G (used to collect all the sampled groups) and returns it. Lines from
10 to 14 identify the recursive part of the function. In particular, if the value
of i is not equal to the number of sensitive variables, the algorithm increments
the value of i by one and appends to G the result of a series of recursive calls.
These recursive invocations differ from each other only in the condition passed
as input. In fact, the algorithm iterates for all the possible values of the sensitive
variable Si and, for each value s, it does a recursive call adding the condition of
Si == s to the previous ones through an ∧ connector. Finally, lines from 15 to



6 G. d’Aloisio et al.

19 define the returning conditions of the function. In particular, the maximum
number of samples obtainable from the combination of n sensitive variables plus
the label is given by the product of all the sensitive variables’ and label’s values,
that is:

i∏
1,...,n

|Si| ∗ |L|

If the length of G is equal to this value, then the function has considered and
balanced all the groups and it returns the final sampled dataset DS . Otherwise,
the function being in the middle of the recursive tree, returns G which will be
again merged with the result of other recursive functions. DEMV algorithm can
also be applied to binary classification problems; in that case, the number of
sampling groups will be equal to:

i∏
1,...,n

|Si| ∗ 2

Algorithm 2: Pseudo-code of DEMV

Input: (Dataset D, Sensitive variables S1, S2, . . . , Sn, Label L, i = 0, G = [],
condition=true)

Output: Sampled dataset DS

1 n = length({S1, S2, . . . , Sn})
2 if i == n then
3 foreach l ∈ L do
4 g = {X ∈ D| condition ∧ L == l}

5 Wexp =
|{X ∈ D|condition}|

|D| ∗ |{X ∈ D|L == l}|
|D|

6 Wobs =
|g|
|D|

7 gb = SAMPLE(g,Wexp,Wobs)
8 add gb to G

9 return G

10 else
11 i = i + 1
12 foreach s ∈ Si do

13 G
′

= DEMV (D,S1, . . . , Sn, i, G, condition = condition ∧ Si == s)

14 add G
′

to G

15 if length(G) ==
∏i

1...n |Si| ∗ |L| then
16 DS = merge all g ∈ G
17 return DS

18 else
19 return G
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The implementation of DEMV is available at the Territori Aperti RI

4 Experimental analysis

This section describes the experiments we conducted to evaluate the proposed
method. We analyzed DEMV under heterogeneous conditions where a set of
binary and multi-class datasets were employed. Our method was compared with
Exponentiated Gradient [2] (whose adopted implementation is available on the
Fairlearn library [5]). Following the documentation available online, we used
as for the Exponentiated Gradient (EG): the Demographic Parity for binary
classifications and Zero-one Loss [10] for multi-class problems.

We used a Logistic Regression classifier and conducted 10-fold cross-validation
[27]. We decided to apply DEMV and EG only on the training set.

For all the experiments, we computed the following metrics on the testing set:
Statistical Parity (SP)[20,11], Disparate Impact (DI)[12], Zero-one Loss (Z.O.
Loss)[10], and Accuracy (Acc.)[28]. In addition, since DEMV has a stochastic
behavior, for each training set, we ran DEMV and computed the corresponding
metrics 30 times so that we can investigate how the removal or duplication of
different samples can influence the accuracy and the fairness of our method.
Since DI tends to show a reverse-bias situation more than SP and the other
selected metrics, to highlight the maximum fairness point under DI better, we
use the formulation proposed by Radovanovic et al. in [24]:

DI = min

(
p(ŷ = 1|s = 1)

p(ŷ = 1|s = 0)
,
p(ŷ = 1|s = 0)

p(ŷ = 1|s = 1)

)
(5)

This metric computes the minimum among two formulations of DI wherein one
the unprivileged group (s = 0) is at the numerator, and the other is at the
denominator. The metric value is hence between 0 and 1, where 1 means complete
fairness.

4.1 Employed datasets

The experiments have been conducted by employing eight well-known datasets
(3 for the binary classification and 5 for the multi-class task), coming from the
Bias and Fairness literature:

– Adult Income (ADULT) [18]: a binary dataset that comprises 30,940
items by 102 features (one-hot encoded). The goal is to predict if a person
has an income higher than 50k a year. This information is represented by
the income variable. The protected attributes are sex, and race and the
unprivileged group is black women (items with sex and race equal to zero).
The positive label is ”high income”.

– ProPublica Recidivism (COMPAS) [3]: This binary dataset is made of
6,167 samples by 399 attributes. The sensitive variables are sex and race.
The goal is to predict if a person will recidivate in the next two years. The

https://bit.ly/3scwtaB
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favorable label, in this case, is no, and the privileged group is Caucasian
women (items with sex and race equal to one).

– German Credit (GERMAN) [25]: This binary dataset classifies people
described by a set of attributes as good or bad credit risks (credit variable).
The dataset consists of 1,000 instances by 59 features (one-hot encoded). The
sensitive variables are sex, and age and the unprivileged group is women with
less than 25 years. The positive label is low credit risk.

– Contraceptive Method Choice (CMC) [22]: This multi-class dataset
comprises 1,473 instances and ten columns about women’s contraceptive
method choice (not-use, short-use, and long-use). The sensitive variables are
religion and work. The unprivileged group is Islamic women who do not
work (both values equal one), and the positive label is long-term use.

– Communities and Crime (CRIME) [26]: This multi-class dataset is
made of 1,994 instances by 100 attributes and contains information about the
per-capita violent crimes in a community (variable ViolentCrimesPerPop).
Since the label is continuous, we transformed it by grouping the values in
6 classes using equidistant quantiles. Following [6] the sensitive attribute is
the percentage of the black population, but we also considered the ratio of
the Hispanic population to have two sensitive variables. The unprivileged
group is communities with a high percentage of both black and Hispanic peo-
ple (both variables equal to 1), and the positive label is 100 (class of low
rate of crimes).

– Law School Admission (LAW) [4]: This multi-class dataset comprises
20,694 samples by 14 attributes and contains information about the bar
passage data of Law School students. We grouped the continuous label (GPA)
in 3 groups using equidistant quantiles. The sensitive variables are race and
gender and the unprivileged group are black women (both variables equal
to one), and the positive label is 2 (class of high scores).

– The Trump Effect in Europe (TRUMP) [9]: This multi-class dataset
is the result of a survey about political preference in Europe after Trump’s
presidential election. It is made of 7,951 features and 204 attributes. The la-
bel is political view and the sensitive variables are gender and religion.
The unprivileged group is non-catholic women (both variables equal to 0),
and the positive label is equal to 3.

– Wine Quality (WINE) [8]: This multi-class dataset comprises 6,438 in-
stances and 13 attributes about wine quality. The sensitive attributes are the
wine’s color (type variable) and the alcohol percentage lower or higher than
10 (alcohol variable). The unprivileged group is white wine with alcohol
percentage ≤ 10, and the positive label is 6 (high quality).

Table 1 summarizes the key datasets’ information.

4.2 Experimental results

In this section, we present the results in binary and multi-class classification. For
both experiments, we report charts showing the mean and the standard deviation
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Table 1. Datasets information

Adult Compas German CMC Crime Law Trump Wine

Scope Social Justice Social Social Justice Education Social Food

Instances 30,940 6,167 1,000 1473 1,994 20,427 7,951 6,438

Features 102 399 59 10 100 14 204 13

Type binary binary binary multi multi multi multi multi

Sensitive
variables

sex

race

sex

race

sex

age

work

religion

black

hisp

gender

race

religion

gender

type

alcohol

Percentage
of sensitive
group

5.02% 54.71% 10.50% 64.83% 23.62% 8.42% 30.71% 11.40%

for each of the metrics described in section 4 (y-axis) at each DEMV iteration
(x-axis). At iteration zero, the graphics report the metrics of the original biased
dataset, while at the end of the curves they show the metrics computed, on the
whole, balanced dataset. On the right part of the plots are reported using bigger
points, the same metrics obtained by the EG algorithm.

Binary classification. The results for binary classification are shown in figure
1 where the performance of DEMV at each iteration (x-axis) is shown.
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Fig. 1. Comparison of DEMV at each sampling iteration with EG for binary classifi-
cation datasets.

The EG method can find the best trade-off between fairness and accuracy in
the binary classification case. Instead, our approach has more difficulty improv-
ing fairness, especially when the bias is very high (see Adult dataset). However,
our method can keep a high accuracy level when the dataset is fully balanced.
In all the analyses, we can see that the complete balancing of the dataset leads
to the best fairness of the classifier.
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Multi-class classification. Similarly, the results for multi-class classification
are shown in figure 2 where the performance of DEMV is shown at each iteration
(x-axis).
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Fig. 2. Comparison of DEMV at each iteration with EG for multi-class classification
datasets.

As it is possible to notice from the figure, DEMV outperforms EG in all
metrics for what concerns multi-class classification problems. As said at the
beginning of the section 4, Zero-One Loss is adopted as a minimization constraint
for EG in the multi-class task. Moreover is it worth to note that not always the
complete balancing of the dataset leads to the best fairness of the classifier.
In fact, in two datasets, namely Trump and CMC, we observed that the best
fairness under DI is achieved respectively with 15 and 9 iterations of the sampling
algorithm. The intrinsic characteristics of such datasets can justify this behavior:
in CMC, the size of the unprivileged group is about 65% of the total population,
while Trump has a very shallow bias. In such situations, we observed that it is
not convenient to fully balance the datasets’ groups. Finally, we observe that
DI has a higher variance than SP, especially in datasets with a shallow bias like
Trump.
Discussion. From the above analyses, we can draw the following considerations
about DEMV. Our method can constantly improve the fairness of the classifier
both in binary and multi-class classification, with respect to the initial biased
classifier, keeping the accuracy almost unchanged (up to 0.05 points in case
of CRIME). Moreover, DEMV algorithm has the advantage of being data and
model agnostic, meaning that it can be applied to any dataset with any number
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of sensitive variables and any number of label’s values, and it can be used with
any classifier.

Concerning binary classification, DEMV little improves fairness, especially
when the bias is very high; while other existing methods may perform better in
these cases. For multi-classification setting, instead, our method outperforms the
baseline, improving the fairness significantly (up to 0.4 points for DI in the case of
the Law dataset). In addition, we observed that, in some particular circumstances
(like CMC and Trump), achieving a complete balance of the sensitive groups does
not lead to the best possible fairness. In such situations, a partial sampling of
the groups is preferable.

5 Conclusion and Future Work

In this paper, we extended the work of [17] to present the Debiaser for Multi-
ple Variables, a novel approach to enhance fairness in multi-class classification
problems with any number of sensitive variables. We exhaustively compared it
with the baseline method described in [2] performing both binary and multi-class
classification.

We can summarise the following take away outcomes:

– DEMV is a novel approach, primarily defined for the under explored multi-
class classification;

– DEMV is a better strategy to adopt than EG in the multi-class task;
– performing a complete balancing is not always the optimal solution for all

the datasets;
– we used DEMV also in binary classification, observing an improvement for all

metrics. However, as expected, other specifically designed methods perform
better in such cases.

In the future, we like to investigate further which are the characteristics of
the dataset that lead to optimal performance before a complete balance within
the groups. Furthermore, we want to determine the impact of adopting a higher
or lower number of sensible variables and if the method remains consistent both
in terms of accuracy and fairness. Given the independence among the predicted
positive label, DP may not be the best metric to use in case of multi-class
classification, hence we will explore other metrics for evaluation. Finally, we
will widely evaluate our approach with respect to other existing multi-class bias
mitigation methods, also considering a more extensive set of datasets covering
different domains and having distinct, not overlapping characteristics.
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