Modeling Quality and Machine Learning Pipelines through
Extended Feature Models

Giordano d’Aloisio

giordano.daloisio@graduate.univaq.it
University of L’Aquila
L’Aquila, Italy

ABSTRACT

The recently increased complexity of Machine Learning (ML) meth-
ods, led to the necessity to lighten both the research and industry
development processes. ML pipelines have become an essential
tool for experts of many domains, data scientists and researchers,
allowing them to easily put together several ML models to cover
the full analytic process starting from raw datasets. Over the years,
several solutions have been proposed to automate the building
of ML pipelines, most of them focused on semantic aspects and
characteristics of the input dataset. However, an approach taking
into account the new quality concerns needed by ML systems (like
fairness, interpretability, privacy, etc.) is still missing.

In this paper, we first identify, from the literature, key quality
attributes of ML systems.Further, we propose a new engineering
approach for quality ML pipeline by properly extending the Feature
Models meta-model. The presented approach allows to model ML
pipelines, their quality requirements (on the whole pipeline and
on single phases), and quality characteristics of algorithms used
to implement each pipeline phase. Finally, we demonstrate the
expressiveness of our model considering the classification problem.

CCS CONCEPTS

« Software and its engineering — Extra-functional proper-
ties; - Computing methodologies — Machine learning; Model
development and analysis.

KEYWORDS

machine learning pipeline, software quality, feature models, product
line architectures, model-driven

ACM Reference Format:

Giordano d’Aloisio, Antinisca Di Marco, and Giovanni Stilo. 2022. Modeling
Quality and Machine Learning Pipelines through Extended Feature Models.
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Machine Learning (ML) systems are increasingly becoming a used
instrument, applied to all application domains and affecting our real

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Antinisca Di Marco
antinisca.dimarco@univagq.it
University of L’Aquila
L’Aquila, Italy

Giovanni Stilo
giovanni.stilo@univaq.it
University of L’Aquila
L’Aquila, Italy

life. Such systems can be defined as a set of one or more ML pipelines
that take as input raw (unprocessed) data and return actionable
answers to questions in the form of machine learning models [3].

Such pipelines usually require a good knowledge of the underly-
ing ML domain to choose the best techniques and models to solve
the targeted problem. For this reason, many methods have been
developed in the last years to automate some phases of pipeline
development [22, 28, 46]. However, these techniques are mainly
focused on semantic characteristics of the input dataset, ignoring
the new essential quality properties introduced by such ML systems,
such as dataset’s bias reduction, model’s interpretability, and fair-
ness improvement [7, 38, 41]. Indeed, if we consider the impact that
ML applications have in our lives, it is clear how assuring that these
quality properties are satisfied is of paramount importance. The
importance of having high-quality ML systems is also highlighted
by some of the 17 sustainable development goals proposed by the
United Nations [42]. In particular, to accomplish goals 5 (gender
equality) or 10 (reduced inequalities) on a large scale, we will pos-
sibly rely on information systems. If those information systems
include some ML pipelines (for classification or recommendation
problems), it will be essential to properly manage and improve
properties as Fairness or Interpretability.

In this paper, we present the first step on implementing MANILA
(Model bAsed developmeNt of ml pIpeLines with quAlity), a novel
approach for engineering high-quality ML pipelines. First, we iden-
tify key quality attributes in ML systems by selecting the more
adopted properties in the literature. Next, we discuss how ML
pipelines can be modeled as Product Line Architectures [10], in
which the variation points are the developed algorithms. For our
aims, we use and extend the Feature Model formalism and meta-
model[32]. The choice of which algorithms will be executed in
the pipeline, case by case, is driven by the functional and quality
requirements specified by the ML designer.

In this work, we focus on the modeling and specification of
ML pipelines with involved quality attributes. The pipelines are
modeled through Quality and Feature Models, which extend Feature
Models [32] with quality properties of features. Models can also con-
tain functional and quality requirements, specified by ML designers,
that the approach will use to generate the final ML system.

The Quality and Feature Models are complaint to the MANILA
Quality and Feature Meta-Model (detailed in Section 4.1), that is
an extension of the Feature Meta-Model [9]. In addition, on top of
the defined meta-model, we implement a graphical editor which
permits: i) to create Quality and Feature models, representing the
Product-Line Architecture of the ML pipelines, enriched by Quality
aspects. This modeling is in charge of ML experts; ii) to specify

https://orcid.org/0000-0001-7388-890X
https://orcid.org/0000-0001-7214-9945
https://orcid.org/0000-0002-2092-0213
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

functional and quality requirements that the final ML system must
satisfy. This modeling task is in charge of ML designers.

This paper is organized as follows: in section 2, we discuss re-
lated works describing first the papers that are related to identify
and engineering quality attributes in ML pipelines; next we discuss
other approaches that uses Feature Models to model quality of soft-
ware systems or other kinds of ML pipelines. In section 3, we make
an overview of the problem of Quality Assurance in ML pipelines:
we first discuss the selected quality attributes and how they affect
ML pipelines, next we describe MANILA, a more comprehensive
approach that aims to define an innovative model-driven frame-
work that guides ML designers in developing ML pipelines assuring
quality requirements. Section 3.3 describes the modeling framework
that we have developed on this work: we start by describing the
Quality and Feature Meta-Model, and next we describe the imple-
mented graphical editor to create Quality and Feature models and
specify quality requirements. Section 5 is dedicated to a proof of
concept of the developed modeling framework by reproducing a
case study. Finally, section 6 presents some discussions, describes
future work, and wraps up the paper.

2 RELATED WORK

The problem of quality assurance in machine learning systems has
gained much relevance in the last years. Many articles highlight the
needing of defining and formalize new standard quality attributes
for machine learning systems [7, 15, 21, 38, 41, 52]. Most of the
works in the literature focus either on the identification of the most
relevant quality attributes for ML systems or on the formalization
of them in the context of pipelines development.

Concerning the identification of quality attributes in ML sys-
tems, the authors of [34, 54] identify three main components in
which quality attributes can be found: Training Data, ML Mod-
els and ML Platforms. The quality of Training Data is usually
evaluated with properties such as privacy, bias, number of missing
values, expressiveness. For ML Model, the authors mean the trained
model used by the system. The quality of this component is usu-
ally evaluated by fairness, explainability, interpretability, security.
Finally, the ML Platform is the implementation of the system,
which is affected mostly by security and computational complex-
ity. Muccini et al. identify in [41] a set of quality properties as
stakeholders’ constraints and highlight the needing of considering
them during the Architecture Definition phase. The quality attributes
are: data quality, ethics, privacy, fairness, ML models’ performance,
etc. Martinez-Fernandez et al. also highlight in [38] the needing
of formalizing quality properties in ML systems and to update the
software quality requirements defined by ISO 25000 [30]. The most
relevant properties highlighted by the authors concern: ML safety,
ML ethics, and ML explainability.

Many solutions have been proposed to formalize and model stan-
dard quality attributes in ML systems. CRISP_ML is a process model
proposed by Studer et al. [49], extending the more known CRISP_DL
[37] process model to machine learning systems. They identify a set
of common phases for the building of ML systems namely: Business
and Data understanding, Data preparation, Modeling, Evaluation,
Deployment, Monitoring and Maintenance. For each phase, the au-
thors identify a set of functional quality properties to guarantee the

d’Aloisio, et al.

quality of such systems. Similarly, the Q4AI consortium proposed
a set of guidelines [25] for the quality assurance of ML systems
for specific domains: generative systems, operational data in pro-
cess systems, voice user interface system, autonomous driving and
AI OCR. For each domain, the authors identify a set of properties
and metrics to ensure quality. Concerning the modelling of quality
requirements, Azimi et al. proposed a layered model for the quality
assurance of machine learning systems in the context of IoT [5]. The
model is made of two layers: Source Data and ML Function/Model.
For the Source Data, a set of quality features are defined: complete-
ness, consistency, conformity, accuracy, integrity, timeliness. Machine
learning models are instead classified into predictors, estimators and
adapters and a set of quality features are defined for each of them:
accuracy, correctness, completeness, effectiveness, optimality. Each
system is then influenced by a subset of quality characteristics
based on the type of ML model and the required data. Ishikawa
proposed, instead, a framework for the quality evaluation of an
ML system [29]. The framework defines these components for ML
applications: dataset, algorithm, ML component and system, and,
for each of them, proposed an argumentation approach to assess
quality. Finally, Siebert et al. [47] proposed a formal modelling def-
inition for quality requirements in ML systems. They start from
the process definition in [37] and build a meta-model for the de-
scription of quality requirements. The meta-model is made of the
following classes: Entity (which can be defined at various levels
of abstraction, such as the whole system or a specific component
of the system), Property (also expressed at different levels of ab-
straction), Evaluation and Measure related to the property. Starting
from this meta-model, the authors build a tree model to evaluate
the quality of the different components of the system. To the best
of our knowledge, this is the first attempt at formalizing the quality
of ML systems using a model-driven approach.

From this analysis, we can conclude that there is a robust research
motivation in formalizing and defining new quality attributes for
ML systems. Many attempts have been proposed to solve these
issues, and several quality properties, metrics and definitions of
ML systems can now be derived from the literature. However few
issues are still not fully been addressed:

(1) a mapping between quality attributes and components of an
ML pipeline;

(2) amodeling of how each quality attribute may influence the
development of an ML pipeline;

(3) a modeling of the influence each quality property can have
on other attributes;

In this paper, we aim to solve these concerns by proposing a novel
model-driven approach which will allow ML designers to model ML
pipelines with quality attributes. In particular, we extend the meta-
model of the Feature Models to allow the specification of Quality and
Feature Models. The Quality and Feature model comprises features
and quality properties which are related to or can be implemented
by the features themselves. In addition, the presented meta-model
allows the specification of functional and quality requirements
by selecting from the Quality and Feature model only the quality
properties that are needed and by specifying attributes related to
features.

Modeling Quality and Machine Learning Pipelines through Extended Feature Models

The proposed approach is similar to the one proposed by Asadi
et al. in [4]. In their work, the authors present a framework for the
automatic configuration of feature models based on non-functional
requirements. They start from the extension of feature models to al-
low the definition of quality attributes associated to features. Then,
they use the stakeholders requirements (defined as a set of func-
tional and non-functional requirements with relative constraints
among them) and the extended feature model to build a Hierarchical
Task Network Planning problem which is finally solved to derive the
final configuration that satisfies both functional and non-functional
requirements. However, in their work the authors consider the tra-
ditional quality properties as defined in the ISO 25000. Instead, the
new quality properties introduced by ML systems requires a differ-
ent formulation in terms of modeling. For example, some quality
attributes (e.g., fairness) are directly implemented by features in
the model which must be selected if the implemented property is
required. In our work, we consider these new quality properties in-
troduced by ML systems and make a new modeling of them taking
into account their new intrinsic characteristics. Finally, a similar
approach of using Feature Models to model ML pipelines has been
used by Di Sipio et al. in [16]. In their work the authors use Feature
Models to model ML pipelines for Recommender Systems, however
they do not consider quality attributes in their approach.

3 QUALITY ASSURANCE IN ML PIPELINES

In this section, we make an overview of Quality Assurance (QA) in
ML pipelines. In particular, in section 3.1 we define quality in ML
pipelines by selecting the quality properties that are more frequent
and relevant in the literature. Next, in section 3.2 we describe a
generic ML pipeline and highlight how the chosen quality proper-
ties may influence each phase of the process. Finally, in section 3.3
we propose our broaden vision on engineering ML pipelines with
quality constraints leveraging on model-driven generative tech-
niques.The modeling framework we present in this paper (detailed
in Section 4) is the foundational part of our generative approach
and it leverages on the . definitions given in these sections.

3.1 Considered Quality Attributes

In software engineering, a Quality Requirement is a requirement
that specifies criteria that can be used to quantify or qualify the
operation of a system, rather than to specify its behaviors [12].

To analyze an ML pipeline from a qualitative perspective, we
have to determine the Quality Attributes (QA) that we can use to
judge the operation of the pipeline, and that can influence the ML
designers’ decisions. To identify the QA to consider, we refer to the
literature for ML systems [21, 34, 41, 52].

Figure 1 summarizes the selected QA and their mutual influence.
In the figure, white circles represent the quantitative QA (attributes
that can be measured using one or more metrics), while grey ones
represent the qualitative QA (attributes that can not be measured
with a specific metric). Arrows mean influence, for example an
arrow from QA A to QA B models the influences of A to B. In
some cases, as for the Computational Complexity and the Predic-
tion Correctness, the impact is mutual; in other cases, like Fairness
and the Interpretability, it is mono-directional. In addition, while

Conference’17, July 2017, Washington, DC, USA

Influence

Influence>»{ Interpretability Influence:

Influence

Prediction
Correctness

Figure 1: Quality attributes in ML pipelines and their influ-
ence

some properties can be estimated a-priori (i.e. without adding ad-
ditional computational tasks to the pipeline) and associated with
features (e.g., Interpretability or Computational Complexity), oth-
ers (e.g., Fairness or Prediction Correctness) can be evaluated only
executing the actual pipeline implementation enriched by specific
computational steps that quantifies them.
In the following, we describe the selected QA in more detail.
Computational Complexity. This quantitative QA defines the
computational complexity of the final ML pipeline at production
time as the pair Space Complexity (SC) and Time Complexity (TC),
where the first indicates the amount of memory required by a
pipeline to perform all its phases, and the second indicates the
time required by the pipeline to complete the whole task [13]. This
attribute can influence various pipeline stages (see section 3.2) and
other QA such as Prediction Correctness, or Fairness. In fact, ML
methods that are more accurate in their predictions are also more
complex from a computational point of view (e.g., Neural Networks).
The same holds for Fairness, in fact if the ML pipeline is required to
be fair, then enhancing fairness methods must be included in the
pipeline and this will increase the overall complexity of the process.
Prediction Correctness. This quantitative QA is used to define
how good the model must be in predicting outcomes. There are
different metrics in the literature, each addressing a different goal
of the user to compute the prediction correctness of an ML model.
Among the most common metrics, we cite Precision: fraction of
true positives (TP) with respect to the total positive predictions
[8]; Recall: fraction of TP to the total positive items of the dataset
[8]; F1 Score: harmonic mean of Precision and Recall [50]; Accuracy:
fraction of True Positives (TP) and True Negatives (TN) above the
total of predictions [44]. This QA could impact all the steps of the
pipeline regarding the training and testing of an ML model (see
section 3.2) and can influence the Computational Complexity QA.
Interpretability. Interpretability can be defined as the ability of
a system to enable user-driven explanations of how a model reaches
the produced conclusion [11]. Interpretability is one of the quality
attributes that can be estimated without executing an actual ML
pipeline. Interpretability is a very strong property that can hold only
for white-box approaches (such as decision trees). Instead, black-
box methods (such as neural networks) requires the addition of
explainability enhancing methods to have their results interpretable
[36]. In this paper, we consider interpetability while we leave, for
future work, the treatment of explainability for black-box learning

Conference’17, July 2017, Washington, DC, USA

approaches. Interpretability can influence (i.e., it can reduce) the
Privacy of the pipeline and can be affected by the Fairness QA.
In fact, fairness enhancing methods change the value of (some)
attributes of the dataset and this can reduce the interpretability of
the model [39].

Privacy. Privacy can be defined as a qualitative QA allowing
sensitive information of a dataset to be hidden, changing the value
of some attributes [20]. Recent works have shown how privacy can
affect the ML model during the deployment phase [45]. This QA
directly impacts the Interpretability since a higher level of privacy
necessarily causes less interpretability of the model.

Fairness. A ML model can be defined as fair if it has no prejudice
or favoritism towards an individual or a group based on their inher-
ent or acquired characteristics, identified by the so-called sensitive
variables [39]. This quantitative QA influences the Interpretability
(since some methods for bias mitigation require changing the label
of some sensitive attributes), the Computational Complexity (since
bias mitigation methods add an extra step to the pipeline), and the
Prediction Correctness (since mitigating the bias typically reduces
the performance of the predictions).

3.2 ML Pipelines with Quality Attributes

"ML pipelines formalize and implement processes to accelerate
the development, management, deploy and reuse of ML models"
[26]. Figure 2, inspired by [3, 49], reports a generic ML pipeline

Raw Data Feature Model Model Model Deploy
Data Pre-| Processlng Englneerlng Tralnlng Testing Evaluation and Momlonng

V V
Quallty Quality Quallty Quallty Quality
Attributes Attributes Attributes Attributes Attributes
Privacy Co Correctn Correctr Co
Fairness Computational | | Computational Fairness Fairness
Complexity C
) Privacy Privacy
Fairness
Interpretability Interpretability

Figure 2: ML pipeline with involved quality attributes (in-
spired by [3, 49])

(on the top of the figure) together with the selected QA affecting
the pipeline steps (on the bottom of it). We say that a QA affects
a pipeline’s step if, in presence of a Quality Requirement (QR)
specifying a constraint on that QA, such a QR has an impact on the
development of the step or, in other words, it imposes restriction in
step’s implementation. For instance, in the figure, Computational
Complexity has an impact on the Model Training-Testing and Feature
selection steps, while Privacy can affect Model Evaluation and Model
Deploy and Monitoring steps.

Usually, a ML pipeline takes as input raw (unprocessed) data
and, if needed, computes some pre-processing transformations on
it. Next, it uses the data to train and test an ML model. This model
could be further evaluated, also with human intervention, and
finally deployed and continuously monitored. As shown in figure 2
the pipeline workflow is an iterative process, meaning that most
of the depicted phases can roll back to previous ones. Each of the

d’Aloisio, et al.

described steps are affected by at least two of the QA described in
section 3.1.

The Data Pre-Processing step, which manipulates data, could be
affected by Privacy and Fairness since they are strongly related to
data [20, 39]. The Feature Engineering step aims at selecting the
best dataset’s features used to train the ML model. Since this phase
is fundamental for the definition of a model able to make good pre-
dictions, its implementation is influenced by Prediction Correctness.
In addition, the Computational Complexity is also involved in this
phase since the selection of some features can improve or decrease
the computational complexity of a model [33].

After selecting the best features, the ML model is trained and
tested to verify the correctness of the implemented model. In this
step, QA affecting its implementation are, besides Prediction Cor-
rectness, the Computational Complexity, and the Fairness. In case
associated QRs are not satisfied, the ML pipeline rolls back to the
Feature Engineering to retry the feature selection.

The last two steps, namely Model Evaluation and Model Deploy
and Monitoring, are affected by the same QAs: Correctness, Fairness,
Privacy, and Interpretability.

It is worth to note that the described steps are not mandatory
and some of them can be skipped if not needed in the specific use
case. For instance, if the dataset does not need to be manipulated
before training the model, then the Data Pre-processing phase is
skipped.

Another crucial aspect to consider when evaluating the quality
of ML pipelines is that the depicted QAs are not atomic entities but
they can influence each other. For example, if the system requires
high fairness (e.g., legal reasons [6, 18, 35]), fairness enhancing
components must be included during the Data Pre-Processing and
the Model Training and Testing phases [39]. However, as explained
in section 3.1 this has a negative influence on the predictions’ cor-
rectness [19, 31]. So, if the system is required to have also a high
Prediction Correctness, the pipeline development becomes more com-
plicated and the complexity of the problem grows as the number
of QAs and QRs increases.

To conclude, the identification and formalization of quality at-
tributes and requirements, and their handling in the development
of ML pipelines are mandatory and complex tasks. Our approach
takes these challenges and in this paper, as first results, we present
the modeling framework that enable the development of quality
ML pipelines.

3.3 The MANILA Approach

As explained in section 3.2, the quality assurance of ML pipelines
is a complex task that must consider numerous variables, such as
the impact of quality requirements in each pipeline step and the
influence among quality attributes.

The work presented in this paper is part of MANILA (Model
bAsed developmeNt of ml pIpeLines with quAlity), a more com-
prehensive methodology that aims to define an innovative model-
driven approach and relative framework that guides ML experts and
designers in developing ML pipelines assuring quality requirements.
Figure 3 depicts the high-level architecture of such a framework
and highlights, by means of bold line, the modeling framework pre-
sented in this paper. As discussed earlier (see Figure 2), ML pipelines

Modeling Quality and Machine Learning Pipelines through Extended Feature Models

Requirement Architecture N I
uirem ‘ ‘ et Implementation & Quality Assurance
il
=t
Quality & Feature - Meta Model
1 Quality | <<€ tends>> | Feature Model
Meta-Model Meta-Model
- - Quality
f Compliant ML Pipeline
Defines Quality &
Feature Model Ve
ML .
Expert Compliant Slicing
Functional and
Defines Quality 5 " S m equirements
Requirements Pipeline satisfied?
" Specification
x 1 T
Designer A o

Figure 3: High-level view of MANILA

are made of typical phases [3, 49] that embed a set of standard com-
ponents identified by the system’s functional requirements (like
the ML model suited for an ML goal such as classification) and a
set of variability points. These variability points are represented
by different methods that implement the functional requirement
(e.g., we can have Decision Trees [14], Logistic Regression [40],
KNN [23], Neural Networks [24], and other methods that realize
classification task). Which one of these will be implemented in the
pipeline depends on the specific quality requirements to satisfy. For
instance, suppose we consider multi-class classification problems
[2] and fairness quality property. In this case, variability points are
represented by ML models suitable for the multi-class classification
task and methods to enhance fairness, which must be included in
the pipeline if we want to achieve the given quality requirement.
However, while some fairness methods can be applied to multi-class
datasets (e.g., Exponentiated Gradient [1], or Blackbox [43]) others
can not (e.g., Reweighing [31]), or DIR [19]), hence, they have to be
excluded in the pipeline’s implementation.

Product-Line Architectures, specified by Feature Models, [32, 51]
represent a suitable model to formalize ML pipelines with variability.
Feature Models allow us to define a template for families of software
products with standard features and a set of variability points that
differentiate the final systems. However, they miss adequate means
to specify quality attributes and requirements. In fact, they do not
allow to specify thresholds, metrics, or quality properties related to
features. To address this issue, in MANILA approach (see Figure 3),
we propose to extend the Feature Models meta-model to enable:

(1) the creation, by the machine learning experts and design-
ers, of an enriched feature model with associated quality
attributes for each variability (like done in [4]);

(2) the specification, by the ML designer, of functional and qual-
ity requirements that the implemented pipeline (that is the
one with all variability points solved) satisfies.

During the Requirement Engineering phase, the end-user (named
ML designer in figure 3) specifies a set of functional and qual-
ity requirements compliant with the defined meta-model. These
requirements are used during the Architecture Definition step to
automatically generate, from the extended feature model provided
by the machine learning expert, a set of ML pipeline configurations
able to satisfy the defined functional requirements (the Configura-
tion boxes in the figure). The configurations are defined by remov-
ing from the feature model all the components (and their relative

Conference’17, July 2017, Washington, DC, USA

specification) not suitable to meet the specified requirements or
against some constraints specified in the model. The generated
configurations are given as input to the Implementation & Quality
Assurance step that aims to:

(1) generate for each configuration a python script implement-
ing the ML Pipeline;

(2) verify that at least one generated pipeline satisfies the quality
requirements (Quality ML Pipeline).

The framework returns the set of Quality ML Pipelines, satisfying
quality constraints, if any, or demands the ML designer to relax
quality requirements and repeat the process.

As highlighted in figure 3, the work presented in this paper
implements the Requirement Engineering and part of the Architec-
ture Definition phases. In particular, we extend the Feature Models
meta-model with the possibility of associating quality properties to
features and specifying functional and quality requirements. To en-
act the modeling, we developed on top of the extended meta-model.
In addition, in section 5, we show the potentialities of MANILA
modeling approach.

4 MANILA MODELING FRAMEWORK

This section describes the MANILA modeling framework which is
made of two main components: i) the Quality and Feature meta-
model, and ii) a graphical editor to create the quality and feature
models. Using them, it is possible to specify:

o afeature model for each ML problem. Each feature model rep-
resents the ML pipeline for the specific ML problem, where
the variability points are the set of alternative methods that
could be used in the pipeline steps. This modeling action
is done by the ML expert once. The produced models are
stored in a repository for future uses of ML designers or for
models updates from the experts;

o the quality characteristics, possessed by the methods mod-
elled as variability points. This task is still in charge of the
ML expert and can be specified only for QA quantifiable
a-priori;

o the functional and quality requirements of the specific ML
problem to solve. This modeling task is a duty of ML designer
and it is repeated every time a new ML system must be
implemented.

All the artifacts, models and meta-models, are available at the fol-
lowing link: https://github.com/giordanoDaloisio/manila-framework.

In the following, we detail the Quality and Feature meta-model
and the editor we implement to perform modeling tasks, while an
example of modeling is showed, as proof of concept, in section 5.

4.1 Quality and Feature Meta-Model

The Quality and Feature meta-model allows the definition of an
extended Feature Model with quality properties and the specifica-
tion of functional and quality requirements. The QAs identified in
section 3.1 are used to specify both quality properties of features
and quality requirements of the whole pipeline. Quality proper-
ties and requirements refer to QAs and show the same form, but
the former models descriptive characteristics of variability points
whereas the latter models the prescriptive characteristic of the whole

https://github.com/giordanoDaloisio/manila-framework

Conference’17, July 2017, Washington, DC, USA d’Aloisio, et al.

- - 3 o
T Fosasi vl T Cipeepiyt L arrmiTyew CJualitvbiatung
Feafune e ' o v e [l - LW - PETRLINULE . FECLRD
T N1 wegerwrmyrn | ol ST " DO R [e R L - kAT
& s pai - M TR AN = — FIr MR —_
: - NCEE
1] gkl y rem i
B] i desrem
J] Dol i PPl uena i it £l Thess hecdd
L=l rinh bosnerS panci e tioad ezt e
I R T Teakl
|| AT R DR i
J SR O DO = FIMIACETTH
= EDE TN
-
5 reon 5 | 1] reapeed B
n |
| E Fapiym = Charlfalromesips
= Argural nrmirarg [] 1= | gl e T .
|] S—— e —
11 -1] kel mil v :
A T S 2 | ey - Mo
[L] B - -z
| EEET i E iy - P & i e — e
| I | [w—— J - — :I |
T = [L | S A I 1] s e o=
IR T "
o il b i
T | . A= L
Abiribure 4 l:l:-"pnr.-:llq:\-ulw:ﬂ-'ul.le“q.'] : Feimess FradichonCor
.!- i s Py B pr e . i cEm
== 1y T e e
||' 1] | |
SO 1 —
H Frisacy | Interpretata bty |
(LTS S E e by L sty 1 - |
= rn b s A s i o = LD
||
e f-th.I,l_-l\.'nllnll
I = - . I 1 i By
il 1 Nl et
gy racidrnd ks PP - I

Figure 4: Quality and Feature meta-model

ML pipeline. The combination of features, showing specific quality
characteristics can (or not) satisfy the quality requirements of the
ML pipeline. MANILA approach aims to select a combination of
features that all together implement the ML pipeline and satisfy
the quality requirements.

The meta-model has been implemented using the established
EMF Framework [48] and is depicted in figure 4.

As already discussed in section 3.3, Feature Models are a suitable
model to formalize ML pipelines where variability points models
the concrete methods that can use to implement a pipeline’s step.
Hence, MANILA meta-model is an extension of the meta-model
proposed in [9].

The root entity of the meta-model is the Feature Model, which
represents the model itself and is composed by a Feature entity,
representing the whole ML pipeline, and composed itself by a set
of children, i.e. (sub-)Features.

A Feature entity represents a building block of the ML pipeline.
Features have a name and it can be abstract (i.e., they do not have
a concrete implementation in the final system), hidden (i.e., they
are not shown in the model) and mandatory (i.e., they must be

selected in every configuration) [32]. If a feature does not show the
abstract attribute, it means that it will be concrete. A Feature can be
a composition of other Features. Variability points are represented
by the Features as well, but at a lower level in the composition.

In the composition, Features can belong to two groups: OrGroup
and AltGroup'. OrGroup entities represent an inclusive relation-
ship, meaning that at least one child must be selected if the father is
selected. AltGroup entities represent instead an exclusive relation-
ship, meaning that exactly one child must be selected if the father
is selected.

Finally, Features can have Attributes. Each Attribute has a name
and contains a set of Attribute Value, predefined by the ML expert,
that represent the set of possible values an Attribute can have.

Feature, Attribute, and AttributeValue entities can be part of a
logical Constraint. There are two types of logic constraints: Require-
Constraint and ExcludeConstraint. The first means that, if a feature
involved in the RequiredConstraint is selected in a configuration,

1To enhance the visualization, we omitted from figure 4 these entities. However, a
full picture of the meta-model is available here https://github.com/giordanoDaloisio/
manila-framework/blob/main/assets/metamodel.png

https://github.com/giordanoDaloisio/manila-framework/blob/main/assets/metamodel.png
https://github.com/giordanoDaloisio/manila-framework/blob/main/assets/metamodel.png

Modeling Quality and Machine Learning Pipelines through Extended Feature Models

then also the other Features or Attributes in the logical constraint
must be considered in the final implementation. The second means
instead that, if a feature under the ExcludeContraint is selected,
then the other entity must not be selected in the configuration.

Note that, we extended the original Feature Meta-model to in-
clude in the Constraints also Attributes and AttributeValues. This
extension can help to automatically select suitable components
starting from, for example, the characteristic of the Dataset, which
might have several attributes (e.g. the number of classes in the case
of a classification tasks or the number of sensitive variables when
dealing with fairness [39]) whose values are not compatible with
the characteristics of components that hence must be excluded
during the generation of the ML pipeline configuration.

A Feature Model can contain a set of QualityProperty. Follow-
ing the definition of quality we made in section 3.1, each quality
property refers to one of the attributes we defined earlier: Computa-
tional Complexity, Privacy, Fairness, Interpretability, and Prediction
Correctness. Measurable quality properties are composed by one or
more Metric entities, each implemented by a feature.

Quality property itself can be implemented by one or more Fea-
tures and it can involve other Features. The distinction between
implemented by and involved feature is needed since some fea-
tures directly implement some quality properties (e.g., fairness
is straight provided by some methods able to mitigate the bias of
an ML method), otherwise others are an intrinsic quality property
without requiring an extra computational step (e.g., the computa-
tional complexity is an intrinsic feature of ML algorithms). Finally,
quality properties can also be influenced by each other (modelled
as influenced by relation).

Finally, the functional and quality requirements are represented
by the Requirement entity. In particular, a Feature Model can include
a Requirement related to a specific ML task (classification, regres-
sion, natural language processing, and so on). Each Requirement is
composed by a set of Attribute Specification, modeling the functional
requirement, and a set of Quality Requirement, modeling the quality
requirements on the ML task. Each Attribute Specification is related
to an Attribute and an Attribute Value. Each Quality Requirement is
associated with a Quality Property previously defined in the model
and can contain one or more Thresholds related to a specific Metric.

4.2 Graphical Editor

After defining the meta-model, we implemented a graphical editor
that allows users to easily model ML pipelines and specify func-
tional and quality requirements. The editor has been implemented
using Sirius[53], a well-known tool for building graphical editors
based on the EMF framework.

Figure 5 shows an example of a model complaint to the Quality
and Feature Meta-model built with our editor. Note that, in order to
keep the model simpler and focus only on its semantic, we named
each feature with abstract label such as Child that must be inter-
preted as components. In the figure, Child2.1and Child2.2 represent
specific ML pipeline components involved in the Interpretability
quality property, whereas Child1 and his children model additional
computational components implementing fairness. A real example
of modeling can be seen in section 5.

Conference’17, July 2017, Washington, DC, USA

Fagdirermam
CLASS FICATION

FEE A
[nea b e e -k LB H FLEEY

'|'|m|-.' N g . +Chidd f

Child
[| Chisa

FRosifailuie

Figure 5: Example of Quality and Feature model with a given
requirement

In the devised editor, features are represented by boxes: white
boxes model concrete features, while grey boxes represent abstract
features [51]. Mandatory features are instead highlighted with a
boldface name. Attributes of a feature are defined inside the box,
below its name, with a label following the pattern: <Attribute
Name>: <Attribute Values>. Concerning the example in figure
5, Root Feature is an abstract feature while all the others are con-
crete ones. Furthermore, Child2 is mandatory, and Child2.1 has an
attribute named Attributel with two possible values: Valuel and
Value2.

Following the original definition of Feature Models, each feature
can have one or more children, and children can belong to logical
OrGroup or AltGroup [32]. In the graphical editor, this information
is represented using dotted edges labeled with OR or ALT keyword.
If a child feature does not belong to any group, the edge is not
labelled.

In addition, as already said in section 4.1, features can also re-
quire or exclude other features or attributes. This constraint is ex-
pressed using, inside the box of the requiring/excluding feature, a
specification following the form: <Require |Exclude>: <Feature
Name |Attribute Name|Attribute Name: Attribute Values>.
In the example shown in figure 5, Child2.1 and Child2.2 belong to
an OR group, while Child1, if selected, requires Attributel equal to
Valuel.

QAs are represented with ellipses distinguished by color accord-
ing to the property type (i.e., fairness is green, interpretability is
yellow, and so on).

Quality Properties (ellipses) are linked to the feature that im-
plement them using a green edge. The editor use a yellow edge to
link Quality Properties (ellipses) to the involved features. To keep
the model clearer, we have decided not to represent metrics but
just to label the features implementing a given metric with a label
following the pattern: Implements: <Metric Name> [<Quality
Property>].

Conference’17, July 2017, Washington, DC, USA

The influence among quality properties is modelled by means
of a red edge (inflienced by) that starts from the influenced qual-
ity (ellipse) and points to the influencing property (ellipse). In the
example of figure 5, we have two quality properties: fairness (of PRE-
PROCESSING type [39]) and interpretability. Fairness requires extra
computational task is implemented by the feature Child1, while
interpretability, being an a-priori quality does not require an extra
feature and involves Child2.1 and Child2.2. In particular, Child2.1 is
involved with a low level of interpretability, while Child2.2 is in-
volved with a high level of interpretability. Interpretability could be
influenced by fairness (as discussed in section 3.1). This information
is modelled by means two red edges starting from each Interpretabil-
ity node and pointing to the Fairness node. Finally, Child1.1 and
Child1.2 are two features implementing two metrics for fairness,
namely Metricl and Metric2, respectively.

Requirements are represented with orange boxes. The name
of the box follows this pattern: Requirement <ML Task>. In the
Requirement box, there is a list of possible attribute specifica-
tions. Each specification follows the pattern: <Attribute Name>:
<Attribute Value>. Quality requirements are represented with
red edges connecting the requirement to the related quality prop-
erty. Finally, thresholds are represented with brown edges that
connect the quality property with a feature implementing the rela-
tive metric. The value of the threshold is reported with a label on
the edge. Concerning figure 5, there is a requirement for the classi-
fication task, setting Attributel equal to Valuel and requiring both
fairness and interpretability quality properties. In particular, there
is a requirement for a low level of interpretability and a fairness
value equal to or lower than 0.2 under Metricl.

5 PROOF OF CONCEPT

This section describes the proof of concept we conducted in our
work. In particular, we want to ask the following research questions:

RQ1. Are our meta-model and editor able to properly
represent an actual ML pipeline specification with
involved quality requirements?

RQ2. Does the built model enable the generation of ML
pipeline configurations?

To answer these questions, we specify, using the implemented
editor, a Quality and Feature model that reproduces a ML pipeline
for multi-class classification problems, subject to fairness and pre-
diction correctness quality constraints. In particular, in this example
we focus on the Pre-Processing fairness, which consists on apply-
ing fairness enhancing methods to the dataset before using it as an
input to train the classifier [39]. Hence, recalling the figure 2, the
pipeline steps involved in this example are Data Pre-Processing and
Model Training-Testing. We do not represent the Feature Engineering
phase to keep model clearer and more readable.

Concerning RQ1, figure 6 shows the implemented model to
represent the multi-class classification pipeline?. The root feature is
the ML Pipeline, which is an abstract mandatory feature. Describing
its children, going from left to right, the first is the Dataset feature,

2The same picture with a higher resolution is available here https://github.com/
giordanoDaloisio/manila-framework/blob/main/assets/quality-features-model.jpg

d’Aloisio, et al.

which has two attributes regarding the type of label (binary or
multiclass) and the number of sensitive variables (i.e., variables
affected by bias). Following, there are the features related to fairness.
In particular, these features are distinguished between methods to
implement fairness and metrics to measure it. Concerning methods,
we have included the most common pre-processing methods to
improve fairness: Reweighing [31], DIR [19], EG [1], and Blackbox
[43]. Since Reweighing and DIR can only be applied to datasets with
a binary label and a single sensitive variable, we added a Require
logical constraint requiring the Label attribute to be equal to binary
and the Number of sensitive variables attribute to be equal to single.
In addition, the abstract Fairness feature requires, if selected, to
specify the Number of sensitive variables attribute.

The Fainess Metrics entity is in relationship with features imple-
menting metrics usable to measure fairness, which are: Statistical
Parity (SP) [35], Disparate Impact (DI) 18], and Equalized Odds (EO)
[27]. These features belong to an OR group, meaning that at least
one metric must be selected if the father is selected.

Features implementing the metrics for the Prediction Correctness
are Precision [8], Recall [8], Zero One Loss [17], and Accuracy [44].
These features are children of an abstract father feature named
Prediction correctness and belong to an OR group.

Finally, the model contains features representing ML classifiers.
In this model, we have included the most used ML methods for
classification: KNN [23], Logistic Regression [40], Neural Networks
[24], and Decision Trees [14]. These features are children of an ab-
stract Classifier feature, which is mandatory, and they are members
of an ALT group, meaning that only one of them can be selected
inside a configuration. The Classifier is involved in the Prediction
Correctness quality property, meaning that all the children of this
feature will be also involved in this quality attribute. Fairness and
prediction correctness can influence each other, so there are two
(red) edges indicating their mutual influence.

The presented model specifies the requirements of the needed
ML system that must execute multi-class classification on datasets
with more than one sensitive variable. The ML system must be fair
and have high prediction correctness:

(1) the Prediction correctness must consider Accuracy metric,
whose value must be higher or equal to 0.85, and Zero-One
Loss metric that must be lower or equal to 0.2;

(2) Fairness must use Disparate Impact metrics, whose value
must be higher or equal to 0.8, and Statistical Parity metrics
that must be lower or equal to 0.2.

These functional and quality requirements are modeled through
a Requirement entity, which specifies in the Dataset feature, the
value multi-class for the attribute Label and the value multiple for
the attribute Number of sensitive variables.

The Requirement is connected to the two involved quality proper-
ties: Prediction correctness and Fairness. The two involved properties
are then related to the features implementing the metrics used in
the thresholds. In particular, Prediction Correctness is connected
to Accuracy and Zero One Loss through edges labeled with the
threshold’s value. Same for Fairness, which is connected to SP and
DI

The model also specifies the Interpretability property that is
particular important for classification problems even if it is not

https://github.com/giordanoDaloisio/manila-framework/blob/main/assets/quality-features-model.jpg
https://github.com/giordanoDaloisio/manila-framework/blob/main/assets/quality-features-model.jpg

Modeling Quality and Machine Learning Pipelines through Extended Feature Models

Conference’17, July 2017, Washington, DC, USA

Regquremeant
CLASSIFICAT K

Flabed v

& Ponliile OF b

i
Ty 5 e S

Farrmana
Mol vn fig PREPACES irlhsscad by 5
vl s b =, Pradaiien
s Conecines It preiatebty
[MAEDRI LA "
InieApeali
B oyl i =[QIR 1 ::Im”“ ']
i et LT
B s B By Lislr® Lssiimp (RN g
:::u-?: I nypeyl s
by “EG | i s G
TSR b vy ey N - ".f‘:Er:.'F'; f HNr\. T ¥i
! D S 4 S St |
* Blsckbax . ..
ar M * Prerision el
Iﬁ.l [T PR | [rr— Naranrk
Heweigh : ;Mo —ermmm
weighing k s S
&R T
[* Fimussy r-"!"'\'.I"J!: mcown | AT AT
*ED el) LN P = - S
i of wr ' i T '
|r.-|.::-\.l-\. by bbb 1 Zorp Oni Logs — | a E|..=: i
vt [* Frmam e S O + R
= - + ALCUTACY RTWCTIONTTVRICTRE | (O
(TR 5 T
. 5 i IR e Fri AT W] RANGE
| % Faimsoss ALl 3 e
FRENC T R - [T . 9 . -
i r o T el x et peatabiiy
* Fairress Mptricd Wb ol i " * Clussifier s
e e et | R L] . £ e
siitie _ Prediction
carectness
* Dataset |
Lkl Sy, .
e
Fuwnks of r |
B ol i | [* ML Pipeline

g MRl i |

Figure 6: Implemented Quality and Feature model for multi-class classification task with given requirements

targeted by the showed requirement. But, in general, another ML
system specification could ask for it.

ROQ1. The presented meta-model is able to represent an
ML pipeline with involved quality properties. In particular,
relying on the concept of feature models, we can represent
any step of an ML pipeline using features and constraints.
Each feature can be involved in or can implement one or
more quality properties. These properties, along with fea-
tures’ attributes, are then used to specify a requirement.
The requirement, along with the constraints defined in the
model, can be used to generate a set of ML pipeline con-
figurations by cutting off the features that are not needed
and those against a particular constraint.

Concerning RQ2, the requirement of our example defines a
multi-class dataset with more than one sensitive variable. This
specification automatically excludes Reweighing and DIR from the
features to consider to improve fairness since they require a dataset
with a binary label and one sensitive variable. In addition, Precision,
Recall, and Equalized Odds are metrics not considered in the given
quality specification, so their implementations can be omitted from

the set of configurations. Finally, concerning the classifier methods,
they are not involved in any specification or constraint, so all of
them must be considered. However, since they belong to an ALT
group, they must be included in different configurations. Table 1
summarises the set of valid configurations that can be defined from
this requirement. In particular, each row of the table depicts a valid
ML pipeline configuration in which only the required features are
selected. It can be noted how some features (like the dataset or
the fairness and correctness metrics) are always selected. Other
features, like the different ML classifiers or the fairness enhancing
methods varies between configurations. Finally, there are features
that are not present in any configuration, because they are against
the functional and quality requirements defined above.

RQ2. Underlying logical conditions can be derived from
the requirement and constraints specified by the designed
model. The logical condition automatically defines a set of
pipeline configurations by cutting off the features that are
not needed.

Conference’17, July 2017, Washington, DC, USA

d’Aloisio, et al.

Table 1: ML pipeline configurations derived from the requirement specification

Classifier Prediction Correctness Metrics Fairness Methods Fairness Metrics
Dataset | KNN | LogReg | Neural Net | Decision Tree | Zero One Loss | Accuracy | Precision | Recall | Blackbox | EG | Reweighing | DIR | DI | SP EO
1 X X X X X X X
2 X X X X X X X
3 X X X X X X X
4 X X X X X X X
5 X X X X X X X
6 X X X X X X X
7 X X X X X X
8 X X X X X X
6 CONCLUSION AND FUTURE WORK [4] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and Ebrahim

In this paper, we have presented a novel approach to model and
specify ML pipelines with quality requirements. First, we have
identified the most influential quality properties in ML pipelines
by selecting the quality attributes that are most cited in the liter-
ature. We have shown how these quality properties may impact
the pipeline’s steps. Next, we have presented MANILA, a novel
model-driven approach that will guide ML designers in developing
ML pipelines assuring quality requirements. Finally, we described
the modeling framework implemented in our work and proven its
usefulness by reproducing a real use case scenario.

In particular, in order to model ML pipelines with quality at-
tributes, we relied on the concept of Feature Models. We extended
the Feature Models meta-model to create a Quality and Features
meta-model, which allows associating quality attributes to fea-
tures and specifying functional and quality requirements. We have
demonstrated the expressiveness of our meta-model by reproducing
an ML pipeline with quality attributes. In addition, we implemented
a graphical editor which allows the creation of Quality and Feature
models and the specification of the requirements.

In the future, we plan first to conduct a user evaluation of our
graphical editor to evaluate its usability and to integrate other qual-
ity properties (for instance, Explainability [36]) in our meta-model.
Next, we will continue the development of MANILA framework
by first transforming the derived ML pipeline configurations into
actual implementations and further by evaluating the real qual-
ity of the implemented pipelines through their execution in a test
environment. This last step will allow the ML designer to select
the most promising ML system among the ones that satisfy all the
requirements.

Acknowledgments. This work is partially supported by Territori
Aperti a project funded by Fondo Territori Lavoro e Conoscenza
CGIL CISL UIL and by SoBigData-PlusPlus H2020-INFRAIA-2019-1
EU project, contract number 871042.

REFERENCES

[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna
Wallach. 2018. A Reductions Approach to Fair Classification. In Proceedings of
the 35th International Conference on Machine Learning. PMLR, 60-69. https:
//proceedings.mlr.press/v80/agarwal18a.html ISSN: 2640-3498.

Mohamed Aly. 2005. Survey on multiclass classification methods. Neural Netw
19, 1-9 (2005), 2.

Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291-300.

E =

[10

[11

[12

[13

[14]

jpory
)

[16

(17]

[18

=
2

[20

[21

Bagheri. 2014. Toward automated feature model configuration with optimizing
non-functional requirements. Information and Software Technology 56, 9 (Sept.
2014), 1144-1165. https://doi.org/10.1016/j.infsof.2014.03.005

Shelernaz Azimi and Claus Pahl. 2020. A Layered Quality Framework for Machine
Learning-driven Data and Information Models.. In ICEIS (1). 579-587.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.
2018. Fairness in Criminal Justice Risk Assessments: The State of the Art.
https://doi.org/10.1177/0049124118782533 50, 1 (2018), 3-44. https://doi.org/10.
1177/0049124118782533 Publisher: SAGE PublicationsSage CA: Los Angeles, CA.
Jan Bosch, Helena Holmstrém Olsson, and Ivica Crnkovic. 2021. Engineering Al
Systems: A Research Agenda. https://doi.org/10.4018/978-1-7998-5101-1.ch001
ISBN: 9781799851011 Pages: 1-19 Publisher: IGI Global.

Michael Buckland and Fredric Gey. 1994. The relationship between recall and
precision. Journal of the American society for information science 45, 1 (1994),
12-19. Publisher: Wiley Online Library.

Johannes Biirdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and
Andy Schiirr. 2016. Reasoning about product-line evolution using complex feature
model differences. Automated Software Engineering 23, 4 (Dec. 2016), 687-733.
https://doi.org/10.1007/s10515-015-0185-3

Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike Hinchey.
2014. An overview of Dynamic Software Product Line architectures and tech-
niques: Observations from research and industry. Journal of Systems and Software
91 (2014), 3-23. https://doi.org/10.1016/j.jss.2013.12.038

Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. 2019. Machine
learning interpretability: A survey on methods and metrics. Electronics 8, 8
(2019), 832.

Lianping Chen, Muhammad Ali Babar, and Bashar Nuseibeh. 2013. Characterizing
Architecturally Significant Requirements. IEEE Software 30, 2 (2013), 38—45.
https://doi.org/10.1109/MS.2012.174

Stephen A Cook. 1983. An overview of computational complexity. Commun.
ACM 26, 6 (1983), 400-408.

GM Cramer, RA Ford, and RL Hall. 1976. Estimation of toxic hazard—a decision
tree approach. Food and cosmetics toxicology 16, 3 (1976), 255-276.

Elizamary de Souza Nascimento, Iftekhar Ahmed, Edson Oliveira, Marcio Piedade
Palheta, Igor Steinmacher, and Tayana Conte. 2019. Understanding development
process of machine learning systems: Challenges and solutions. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 1-6.

Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and Dr. Phuong Thanh Nguyen.
2021. A Low-Code Tool Supporting the Development of Recommender Systems.
In Fifteenth ACM Conference on Recommender Systems. ACM, Amsterdam Nether-
lands, 741-744. https://doi.org/10.1145/3460231.3478885

Pedro Domingos and Michael Pazzani. 1997. On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss. Machine Learning 29, 2 (Nov. 1997),
103-130. https://doi.org/10.1023/A:1007413511361

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference (2012), 214-226. https://doi.org/10.
1145/2090236.2090255

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, Sydney NSW Australia, 259-268. https:
//doi.org/10.1145/2783258.2783311

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. 2010. Privacy-
Preserving Data Publishing: A Survey of Recent Developments. ACM Comput.
Surv. 42, 4, Article 14 (June 2010), 53 pages. https://doi.org/10.1145/1749603.
1749605

Gorkem Giray. 2021. A software engineering perspective on engineering machine
learning systems: State of the art and challenges. Journal of Systems and Software
(2021), 111031.

https://proceedings.mlr.press/v80/agarwal18a.html
https://proceedings.mlr.press/v80/agarwal18a.html
https://doi.org/10.1016/j.infsof.2014.03.005
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1177/0049124118782533
https://doi.org/10.4018/978-1-7998-5101-1.ch001
https://doi.org/10.1007/s10515-015-0185-3
https://doi.org/10.1016/j.jss.2013.12.038
https://doi.org/10.1109/MS.2012.174
https://doi.org/10.1145/3460231.3478885
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/2783258.2783311
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1145/1749603.1749605

Modeling Quality and Machine Learning Pipelines through Extended Feature Models

[22]

[23]

[24]

[25

™
&

[27

[28

[29]

[30

[31]

[32]

[33

[34]

[35

w
&

[37]

[38]

[39]

[40
[41]

[42

[43]

[44]

[45

P. M. Goncalves Jr. and R. S. M. Barros. 2011. Automating Data Preprocessing
with DMPML and KDDML. In 2011 10th IEEE/ACIS International Conference on
Computer and Information Science. 97-103. https://doi.org/10.1109/ICIS.2011.23
Gongde Guo, Hui Wang, David Bell, Yaxin Bi, and Kieran Greer. 2003. KNN model-
based approach in classification. In OTM Confederated International Conferences"
On the Move to Meaningful Internet Systems". Springer, 986-996.

Martin T Hagan, Howard B Demuth, and Mark Beale. 1997. Neural network
design. PWS Publishing Co.

Koichi Hamada, Fuyuki Ishikawa, Satoshi Masuda, Tomoyuki Myojin, Yasuharu
Nishi, Hideto Ogawa, Takahiro Toku, Susumu Tokumoto, Kazunori Tsuchiya,
Yasuhiro Ujita, et al. 2020. Guidelines for Quality Assurance of Machine Learning-
based Artificial Intelligence.. In SEKE. 335-341.

Hannes Hapke and Catherine Nelson. 2020. Building Machine Learning Pipelines.
"O’Reilly Media, Inc!". Google-Books-ID: H6_wDwAAQBA].

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. 2016. Equality of Opportunity
in Supervised Learning. In Advances in Neural Information Processing Systems,
Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2016/hash/
9d2682367¢c3935defcb1f9e247a97c0d- Abstract.html

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-Based Systems 212 (2021), 106622. https://doi.org/10.1016/
j-knosys.2020.106622

Fuyuki Ishikawa. 2018. Concepts in quality assessment for machine learning-
from test data to arguments. In International Conference on Conceptual Modeling.
Springer, 536-544.

ISO. 2011. ISO/IEC 25010:2011. Technical Report. https://www.iso.org/cms/
render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html

Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and Information Systems 33, 1
(Oct. 2012), 1-33. https://doi.org/10.1007/s10115-011-0463-8

Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.
Michael] Kearns. 1990. The computational complexity of machine learning. MIT
press.

Fumihiro Kumeno. 2019. Sofware engneering challenges for machine learning
applications: A literature review. Intelligent Decision Technologies 13, 4 (2019),
463-476.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counter-
factual Fairness. In Advances in Neural Information Processing Systems (2017),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/hash/
a486cd07e4ac3d270571622f4f316ec5- Abstract.html

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2021. Ex-
plainable AI: A Review of Machine Learning Interpretability Methods. Entropy
23,1 (2021), 18

Fernando Martinez-Plumed, Lidia Contreras-Ochando, Cesar Ferri, Jose Hernan-
dez Orallo, Meelis Kull, Nicolas Lachiche, Maréa José Ramirez Quintana, and
Peter A Flach. 2019. CRISP-DM twenty years later: From data mining processes
to data science trajectories. IEEE Transactions on Knowledge and Data Engineering
(2019).

Silverio Martinez-Fernandez, Justus Bogner, Xavier Franch, Marc Oriol, Julien
Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2022.
Software Engineering for Al-Based Systems: A Survey. ACM Transactions
on Software Engineering and Methodology 31, 2 (April 2022), 1-59. https:
//doi.org/10.1145/3487043 arXiv:2105.01984 [cs].

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. Comput.
Surveys 54, 6 (July 2021), 1-35. https://doi.org/10.1145/3457607

Scott Menard. 2002. Applied logistic regression analysis. Vol. 106. Sage.

Henry Muccini and Karthik Vaidhyanathan. 2021. Software Architecture for
ML-based Systems: What Exists and What Lies Ahead. In 2021 IEEE/ACM Ist
Workshop on Al Engineering - Software Engineering for AI (WAIN). 121-128. https:
//doi.org/10.1109/WAIN52551.2021.00026

United Nations. [n.d.]. THE 17 GOALS | Sustainable Development.
//sdgs.un.org/goals

Preston Putzel and Scott Lee. 2022. Blackbox Post-Processing for Multiclass
Fairness. arXiv:2201.04461 [cs] (Jan. 2022). http://arxiv.org/abs/2201.04461 arXiv:
2201.04461.

G.H. Rosenfield and K. Fitzpatrick-Lins. 1986. A coefficient of agreement as
a measure of thematic classification accuracy. Photogrammetric Engineering
and Remote Sensing 52, 2 (1986), 223-227. http://pubs.er.usgs.gov/publication/
70014667

Victor Ruehle, Robert Sim, Sergey Yekhanin, Nishanth Chandran,
Melissa Chase, Daniel Jones, Kim Laine, Boris Kopf, James Teevan,
Jim Kleewein, and Saravan Rajmohan. 2021. Privacy Preserving
Machine Learning: Maintaining confidentiality and preserving trust.
https://www.microsoft.com/en-us/research/blog/privacy- preserving-machine-
learning- maintaining- confidentiality- and- preserving- trust/

https:

[46

(47

(48

[50

(51

[52

[54

]

]

]

Conference’17, July 2017, Washington, DC, USA

Mauno Rénkkd, Jani Heikkinen, Ville Kotovirta, and Venkatachalam Chan-
drasekar. 2015. Automated preprocessing of environmental data. Future Genera-
tion Computer Systems 45 (2015), 13-24. https://doi.org/10.1016/j.future.2014.10.
011

Julien Siebert, Lisa Joeckel, Jens Heidrich, Adam Trendowicz, Koji Nakamichi,
Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and Mikio Aoyama. 2021. Con-
struction of a quality model for machine learning systems. Software Quality
Journal (2021), 1-29.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008.
EMF: Eclipse Modeling Framework, 2nd Edition (2nd ed.). Addison-Wesley Pro-
fessional. https://www.informit.com/store/emf-eclipse-modeling-framework-
9780321331885

Stefan Studer, Thanh Binh Bui, Christian Drescher, Alexander Hanuschkin, Lud-
wig Winkler, Steven Peters, and Klaus-Robert Miiller. 2021. Towards CRISP-ML
(Q): a machine learning process model with quality assurance methodology.
Machine Learning and Knowledge Extraction 3, 2 (2021), 392-413.

Abdel Aziz Taha and Allan Hanbury. 2015. Metrics for evaluating 3D medical
image segmentation: analysis, selection, and tool. BMC Medical Imaging 15, 1
(Aug. 2015), 29. https://doi.org/10.1186/512880-015-0068-x

Thomas Thum, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract features in feature modeling. In 2011 15th International Software
Product Line Conference. IEEE, 191-200.

Hugo Villamizar, Tatiana Escovedo, and Marcos Kalinowski. 2021. Requirements
Engineering for Machine Learning: A Systematic Mapping Study. In SEAA. 29-36.
Vladimir Viyovi¢, Mirjam Maksimovi¢, and Branko Perisi¢. 2014. Sirius: A rapid
development of DSM graphical editor. In IEEE 18th International Conference on
Intelligent Engineering Systems INES 2014. 233-238. https://doi.org/10.1109/INES.
2014.6909375 ISSN: 1543-9259.

Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning testing:
Survey, landscapes and horizons. IEEE Transactions on Software Engineering
(2020).

https://doi.org/10.1109/ICIS.2011.23
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://doi.org/10.1007/s10115-011-0463-8
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3457607
https://doi.org/10.1109/WAIN52551.2021.00026
https://doi.org/10.1109/WAIN52551.2021.00026
https://sdgs.un.org/goals
https://sdgs.un.org/goals
http://arxiv.org/abs/2201.04461
http://pubs.er.usgs.gov/publication/70014667
http://pubs.er.usgs.gov/publication/70014667
https://www.microsoft.com/en-us/research/blog/privacy-preserving-machine-learning-maintaining-confidentiality-and-preserving-trust/
https://www.microsoft.com/en-us/research/blog/privacy-preserving-machine-learning-maintaining-confidentiality-and-preserving-trust/
https://doi.org/10.1016/j.future.2014.10.011
https://doi.org/10.1016/j.future.2014.10.011
https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://www.informit.com/store/emf-eclipse-modeling-framework-9780321331885
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1109/INES.2014.6909375

	Abstract
	1 Introduction
	2 Related Work
	3 Quality Assurance in ML Pipelines
	3.1 Considered Quality Attributes
	3.2 ML Pipelines with Quality Attributes
	3.3 The MANILA Approach

	4 MANILA Modeling Framework
	4.1 Quality and Feature Meta-Model
	4.2 Graphical Editor

	5 Proof of concept
	6 Conclusion and Future Work
	References

