
Enhancing Trace Visualizations for
Microservices Performance Analysis

Jessica Leone and Luca Traini

6th Workshop on Hot Topics in Cloud Computing Performance (HotCloudPerf 2023)
14th ACM/SPEC International Conference on Performance Engineering

University of L’Aquila, Italy

Microservices

• Loosely coupled independent services

• Benefits:
• Independent scaling
• Independent development
• Fast-paced release cycle

Performance Analysis of Microservices

• Complex interactions of multiple RPCs
spread across multiple machines

• Frequent software releases can introduce
performance issues

• Performance bugs can emerge from the
interaction of multiple RPCs

Distributed tracing

• Capture the workflow of causally-related events
(i.e., work done to process a request) within and
among the components of a microservices system

• Swimlane visualizations as main visualization tool

• Often used in tandem with other visualization
tools, such as Kibana

Distributed tracing

• Used for performance analysis of individual
requests

• Individual request performance can be
misleading without context

• Lack of support for aggregate analysis

0 ms 170 ms 300 ms 500 ms 700 ms

travel-plan-service_GET

travel-plan-service_POST

ticketInfo-service_queryForStationID

ticketInfo-service_GET

basic-service_queryForStationID

station-service_queryForNameBatch

route-plan-service_getCheapestRoute

route-plan-service_GET

route-plan-service_getRouteByTripID

route-plan-service_POST

travel-service_queryInfo

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

Finding correlations with latency degradation

• Automated techniques have been proposed to identify
patterns correlated with end-to-end latency degradation
(Traini and Cortellessa, 2023) and (Bansal et al., 2020)

• Full automation is often not enough
• A human is ultimately responsible for performance analysis

• Visualization approaches are often neglected in the
scientific literature (Davidson and Mace, 2022)

Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier Midy, and Mathru Janakiraman. 2020. DeCaf: diagnosing and triaging performance issues in large-scale cloud services. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP '20). https://doi.org/10.1145/3377813.3381353

Thomas Davidson and Jonathan Mace. 2022. See it to believe it? The role of visualisation in systems research. In Proceedings of the 13th Symposium on Cloud Computing (SoCC ’22).
https://doi.org/10.1145/3542929.3563488

L. Traini and V. Cortellessa, "DeLag: Using Multi-Objective Optimization to Enhance the Detection of Latency Degradation Patterns in Service-Based Systems," in IEEE Transactions on Software
Engineering, doi: 10.1109/TSE.2023.3266041.

Objective

• Leverage visualization approaches to
support performance analysis

• Highlights the relationship between request
characteristics and end-to-end latency

• Reduce the effort of switching between
different tools

0 ms 170 ms 300 ms 500 ms 700 ms

travel-plan-service_GET

travel-plan-service_POST

ticketInfo-service_queryForStationID

ticketInfo-service_GET

basic-service_queryForStationID

station-service_queryForNameBatch

route-plan-service_getCheapestRoute

route-plan-service_GET

route-plan-service_getRouteByTripID

route-plan-service_POST

travel-service_queryInfo

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

Inspiration (Jaeger trace comparison)

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service
getleftticket

order-service
getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Proposal

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency (milliseconds)

Interactive tree Histogram

Request structure in aggregate
Color coding denotes differences in request characteristics

End-to-end latency distributions
How requests characteristics correlates with
latency

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service
getleftticket

order-service
getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Proposal: Interactive tree
• Each node represents a specific RPC

execution path

• Color encoding used to show variance in the
behavior of a particular RPC execution path

• Color encoding configurable for different
request characteristics:
• Path occurrences
• Latency behaviors
• HTTP tags
• Etc.

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service getleftticket

order-service getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Proposal

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency (milliseconds)
0

100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service getleftticket

order-service getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Proposal

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency (milliseconds)
0

100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

23%

77%

no. invocations: 0
no. invocations: 1

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service getleftticket

order-service getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Proposal

23%

77%

no. invocations: 0
no. invocations: 1

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency (milliseconds)

It shows how specific characteristics of requests correlate with end-to-end latency

travel-plan-service
getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service getleftticket

order-service getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatch

Exploratory example

23%

77%

no. invocations: 0
no. invocations: 1

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency (milliseconds)

Request characteristic under analysis: RPC path occurrences
Color encoding: Coefficient of Variance (CV)

Extension points

• Configurable for different request
characteristics and dispersion measures

• Backwards analysis:
• Start from histogram selection
• Color encoding denotes divergence of the

selected set of requests compared to all
others

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

travel-plan-
service

getbycheapest

ticketinfo-service
queryforstationid

basic-service
queryforstationid

seat-service
getleftticket

order-service
getticketlist

travel-service
getroutebytripid

route-plan-service
getcheapestroute

station-service
queryfornamebatch

travel-service
queryinfo

station-service
queryfornamebatc

h

Challenges

• User experience:
• Too much information displayed on the screen can become overwhelming
• Keeping the dashboard minimalistic to avoid placing an excessive burden on

the user

• Tool efficiency
• Distributed tracing tools collect huge volumes of traces per day
• The interaction with the proposed visualizations can be computationally

intensive
• We plan to preprocess traces in an optimized format

Architecture

Trace
collector

Trace
storage

Preprocessing

Interactive
Analysis

Optimized-
Trace

storage

Microservices
system

On going work

• Currently engaged in the development of a prototype
• RPC paths occurrences as request characteristics, and CV as dispersion

measure
• Analysis starting from the tree

• Implementation
• Jaeger as the distributed tracing collector, Elasticsearch for storing traces, and

MongoDB for optimized trace storage
• The dashboard is implemented using Flask for backend and D3.js for frontend.

• Train-ticket as reference case study, with PPTAM as load generator

Conclusion and Future work

• A proposal for a new visualization for aggregate performance analysis
of microservices

• We plan to continue the development of our prototype and extend it
with other capabilities

• Promising opportunities in the possible combination with automated
approaches

