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Microservices

• Loosely coupled independent services

• Benefits:
• Independent scaling
• Independent development
• Fast-paced release cycle



Performance Analysis of Microservices

• Complex interactions of multiple RPCs 
spread across multiple machines

• Frequent software releases can introduce 
performance issues

• Performance bugs can emerge from the 
interaction of multiple RPCs



Distributed tracing

• Capture the workflow of causally-related events 
(i.e., work done to process a request) within and 
among the components of a microservices system 

• Swimlane visualizations as main visualization tool

• Often used in tandem with other visualization 
tools, such as Kibana



Distributed tracing

• Used for performance analysis of individual 
requests

• Individual request performance can be 
misleading without context

• Lack of support for aggregate analysis
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Finding correlations with latency degradation

• Automated techniques have been proposed to identify 
patterns correlated with end-to-end latency degradation
(Traini and Cortellessa, 2023) and (Bansal et al., 2020)

• Full automation is often not enough
• A human is ultimately responsible for performance analysis

• Visualization approaches are often neglected in the 
scientific literature (Davidson and Mace, 2022)
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Objective

• Leverage visualization approaches to 
support performance analysis

• Highlights the relationship between request 
characteristics and end-to-end latency

• Reduce the effort of switching between 
different tools
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Inspiration (Jaeger trace comparison)
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Interactive tree Histogram

Request structure in aggregate 
Color coding denotes differences in request characteristics

End-to-end latency distributions 
How requests characteristics correlates with 
latency
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Proposal: Interactive tree
• Each node represents a specific RPC 

execution path

• Color encoding used to show variance in the 
behavior of a particular RPC execution path

• Color encoding configurable for different 
request characteristics:
• Path occurrences
• Latency behaviors
• HTTP tags
• Etc.
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23%

77%

no. invocations: 0
no. invocations: 1
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It shows how specific characteristics of requests correlate with end-to-end latency
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Exploratory example
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Request characteristic under analysis: RPC path occurrences
Color encoding: Coefficient of Variance (CV)



Extension points

• Configurable for different request 
characteristics and dispersion measures

• Backwards analysis:
• Start from histogram selection
• Color encoding denotes divergence of the 

selected set of requests compared to all 
others

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

No
.re

qu
es
ts

Latency (milliseconds)

travel-plan-
service 

getbycheapest

ticketinfo-service  
queryforstationid

basic-service 
queryforstationid

seat-service 
getleftticket

order-service 
getticketlist

travel-service 
getroutebytripid

route-plan-service 
getcheapestroute

station-service 
queryfornamebatch

travel-service
queryinfo

station-service 
queryfornamebatc

h



Challenges

• User experience:
• Too much information displayed on the screen can become overwhelming
• Keeping the dashboard minimalistic to avoid placing an excessive burden on 

the user

• Tool efficiency
• Distributed tracing tools collect huge volumes of traces per day 
• The interaction with the proposed visualizations can be computationally 

intensive
• We plan to preprocess traces in an optimized format



Architecture
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On going work

• Currently engaged in the development of a prototype 
• RPC paths occurrences as request characteristics, and CV as dispersion 

measure
• Analysis starting from the tree

• Implementation 
• Jaeger as the distributed tracing collector, Elasticsearch for storing traces, and 

MongoDB for optimized trace storage
• The dashboard is implemented using Flask for backend and D3.js for frontend.

• Train-ticket as reference case study, with PPTAM as load generator



Conclusion and Future work

• A proposal for a new visualization for aggregate performance analysis 
of microservices 

• We plan to continue the development of our prototype and extend it 
with other capabilities

• Promising opportunities in the possible combination with automated 
approaches


