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Abstract

Analysis of microservices’ performances is a considerably challenging task due to the

multifaceted nature of these systems. Each request to a microservices system might

raise several Remote Procedure Calls (RPCs) to services deployed on different servers

and/or containers. Existing distributed tracing tools leverage swimlane visualizations

as the primary means to support performance analysis of microservices. These

visualizations are particularly effective when it is needed to investigate individual

end-to-end requests’ performance behaviors. Still, they are substantially limited

when more complex analyses are required, as when understanding the system-

wide performance trends is needed. To overcome this limitation, we introduce

vamp, an innovative visual analytics tool enabling at once the analysis of the

performances of multiple end-to-end requests of a microservices system. vamp was

built around the idea that having a wide set of interactive visualizations facilitates the

analyses of requests recurrent characteristics and their relation w.r.t. the end-to-end

performance behavior. Through an extensive evaluation of 33 datasets generated

from an established open-source microservices system, we show that vamp can

effectively help detect the execution time deviations of specific RPCs that produce

degradation of end-to-end performance. Furthermore, vamp enables the identification

of meaningful structural patterns in end-to-end requests and their relation with

microservice performance behaviors.

Video URL: https://youtu.be/qMVOMt06EJE

https://youtu.be/qMVOMt06EJE
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Chapter 1

Introduction

Microservices have revolutionized the software industry, introducing a novel

paradigm for structuring software development processes [43]. This approach involves

independent teams responsible for the entire software development lifecycle, delivering

loosely coupled and independently deployable services [44, 43] each being responsible

for a small subset of the applications functionality [21]. The modular nature of

microservices aligns well with the need for rapid software updates and enhancements,

which are crucial for maintaining a competitive edge [48].

However, the adoption of microservices also presents challenges, with ensuring

adequate software performance being one of the primary concerns. Proactive per-

formance assurance, such as pre-production testing [27, 57, 34] , is difficult due to

the inherent complexity of these systems [59, 54]. Time and resource constraints

further limit performance assurance efforts, as there is significant pressure to deliver

fast-to-market [57, 48]. Additionally, microservices systems exhibit emergent per-

formance behavior in the field, influenced by the complex interactions of multiple

independent services and machines [59]. These systems also face constant software

changes and variable workloads, making them susceptible to unforeseen performance

regressions [4, 58, 59].

To address these challenges, there has been a growing interest in the concept of

observability [42], which refers to the ability to gain a comprehensive understanding

of the system’s performance by analyzing its logs, traces, and metrics. Distributed

tracing has emerged as a popular observability tool of microservices systems [41, 46],
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capturing the flow of causally-related events within these systems [49]. These tools,

fetch or receive trace data from complex distributed systems, such as microservices,

and process this data before presenting it to the user using more readable charts

and graphs. However, existing distributed tracing tools have been criticized for their

limited support in analyzing system-wide performance behavior [14, 46]. They often

require switching between different visualization tools, leading to a cumbersome

and time-consuming process [14]. Current tracing visualizations primarily focus

on individual request analysis, providing swimlane visualizations as the canonical

way to visualize individual requests, lacking the ability to compare and analyze

the performance behavior of the entire request corpus [3, 46, 14]. observing the

performance of individual end-to-end requests might result in misleading insights if

not contextualized appropriately [14]. Indeed, a request’s response time can only

be deemed anomalous when compared with other requests of the same type [3].

Additionally, engineers are often more inclined to investigate recurrent response

time trends rather than focusing on the performance of individual requests [46].

Diverse end-to-end response time behaviors may be associated with specific request

characteristics, such as particular RPC execution paths or RPC performance behav-

iors. Consequently, engineers may wish to identify these characteristics to uncover

potential performance issues, and gather a more comprehensive picture of the system

performance.

In this thesis, we introduce VAMP, an innovative visual analytics tool designed

to enhance the performance analysis of microservices systems. VAMP builds upon

the concept of distributed tracing and offers two main visualization components.

The first is an interactive tree that illustrates the workflow of multiple end-to-end

requests in terms of Remote Procedure Calls (RPCs). The second is an interactive

histogram representing the performance behavior of the analyzed requests. These

visual components facilitate the understanding of how specific system performance

behaviors relate to the characteristics of RPC execution paths.

We evaluate VAMP using 33 datasets derived from the widely used TrainTicket

microservices system [64]. Our findings demonstrate that VAMP enables the

identification of significant and recurring request characteristics associated with
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specific end-to-end response time behaviors.

1.1 Organization of the Thesis

This thesis is organised as follows:

1. In chapter 2, we introduce the background knowledge. In particular, we

describe microservice architectures describing how to analyze the performance

of these systems and the importance of using distributed tracing tools. Then

we introduce the concept of Visual Analytics making a survey of the used

techniques for visualization and interaction with them. Finally we present

existing visualization techniques for microservices systems.

2. In chapter 3, we present the motivations behind the development of vamp

providing and overview of the main limitations of existing systems.

3. In chapter 4, we introduce VAMP. We describe the components of the tool

and how is possible to interact with each one. We then present the dashboard

and describe how we have implemented the tool.

4. In chapter 5, we describe the experimental analisys of the tool by first describing

the methodology we have used and then we report and discuss the results

obtained from the evaluation.

5. Chapter 6 concludes the thesis and provides some future works.
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Chapter 2

Background

This chapter introduces the necessary background knowledge for understanding

the subsequent chapters of the thesis, where vamp is presented: a novel visual ana-

lytics tool developed to facilitate performance analysis in microservices architecture.

The chapter begins by introducing the microservices architecture, its impact on

the software industry and explains the fundamental principles of microservices.

Next, we explore the challenges associated with ensuring adequate software perfor-

mance in microservices architecture, and we present common tools for microservices

observability.

Following that, we introduce the concept of visual analytics. We describe its

principles and the typical process of Visual Analytics used as a starting point for

the development of VAMP.

Finally, we present existing visualization techniques for microservices systems.

2.1 Microservices architecture

In line with the latest trends in Software Engineering, systems are progressively

growing in size and becoming more distributed. This necessitates the adoption of

new solutions and development patterns [6]. One such approach that has emerged

in recent years is the adoption of microservices architecture. Microservices are

an architectural style for building large software applications by breaking them

down into smaller, independent services. Each microservice focuses on performing a
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Figure 2.1. Microservices architecture

specific task, representing a small business capability.

Microservices emphasize using the most appropriate programming language and

technology for each task. They can be written in different languages and technologies,

depending on the specific requirements. Communication between microservices is

achieved through language-neutral APIs, typically based on HTTP, such as REST.

This approach allows for leveraging existing skills or choosing the optimal language

for each microservice.

One key characteristic of microservices is their small and focused nature. There

is no strict rule on the size of a microservice, but a commonly referenced guideline is

the "Two-Pizza Team" rule [15], which suggests that a microservice should be small

enough to be developed and maintained by a team that can be fed with two pizzas.

Treating each microservice as an individual application or product, they have their

own source code repository and delivery pipeline.

Loose coupling is another important aspect of microservices. Each microservice

can be deployed independently without coordination with other services. This

enables frequent and rapid deployments, allowing for the quick delivery of new

features and capabilities.
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The concept of bounded context is crucial in microservices. A microservice

should not have knowledge about the internal implementation or architecture of

other microservices. If a microservice needs to know about another service, it

indicates a violation of bounded context. Keeping the interfaces small and minimizing

dependencies between microservices helps maintain a clear separation of concerns.

However, it is important to strike a balance in microservice granularity. Overly

granular services or excessive dependencies can introduce latency issues, which need

to be considered and addressed in the design and implementation of microservices.

One of the key principles of a microservices architecture is the idea of service

autonomy. Each microservice operates as an independent entity and has its own

dedicated database, tailored to its specific needs. This decentralized approach allows

each service to make independent decisions about the technology stack, libraries, and

frameworks it uses, without being constrained by other services. As a result, different

services within the same application can be developed using different programming

languages or frameworks, based on what is most suitable for their requirements.

Microservices architecture presents different advantages:

• Agile and rapid development, as each microservice can be developed, tested,

and deployed independently by a dedicated team. This allows for faster release

cycles and the ability to quickly adapt to changing business needs.

• Ability to make targeted bug fixes or updates. Since each microservice repre-

sents a specific business function, developers can make changes or improvements

to a particular service without having to redeploy the entire application. This

granularity of updates reduces the risk of introducing new bugs or disruptions

to other parts of the system.

• Reusability of microservices: because each service focuses on a specific business

capability, it can be reused within the same application or even in different

contexts. This promotes code reusability, reduces duplication of effort, and

facilitates the sharing of functionality across various projects or teams.

• Scalability: with the ability to instantiate and allocate resources on-demand,

services can scale horizontally to handle increased workload or traffic. This elas-
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ticity allows the system to adapt dynamically to changing demands, ensuring

optimal performance and resource utilization.

• the distributed nature of microservices architecture enhances fault tolerance

and eliminates single points of failure. Since services are decoupled and isolated,

the failure of one service does not impact the entire system. Errors can be more

easily detected and isolated, enabling efficient troubleshooting and minimizing

the impact on the overall application.

However, it’s important to note that adopting a microservices architecture also

introduces additional complexities. Managing the inter-service communication,

ensuring data consistency across multiple databases, and coordinating deployment

and versioning of different services require careful planning and robust infrastructure.

Proper monitoring and observability mechanisms are crucial to gain insights into

the behavior and performance of individual services as well as the overall system.

2.1.1 Performance analysis in microservices

Microservice systems present unique challenges when it comes to performance

analysis. These systems are characterized by their extremely small-grained and

complex interactions among microservices, as well as the intricate configurations

of their runtime environments. The execution of a microservices system involves a

significant number of asynchronous interactions, often resulting in complex invocation

chains [63].

Understanding the system’s communication topology and reasoning about the

concurrent activities of system hosts can be difficult. When systems fails, log data is

often the only information available [62], so one common approach to performance

analysis is the examination of logs.

Logs are detailed records of activities that occur within a microservice. They can

be generated for various events such as errors, exceptions and contain different types

of information such as error messages, warnings, debugging information, timestamps,

user actions, system events and so on. Logs provide a comprehensive view of the

activities and events happening in the system and can be useful for identifying errors,
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detect performance anomalies and help identify possible cause problems.

However, logs often contain a mix of different types of information and do not have

a predefined structure. In many systems, they are generated by various components

or applications without a standardized format or organization in capturing and

storing these data.

Therefore, analyzing system logs in a distributed environment requires reconciling

logs from multiple hosts, dealing with the challenges of non-synchronized clocks, and

deciphering the encoded execution flow [7].

One of the defining characteristics of microservice applications is their ability

to scale, with dozens to thousands of microservices running on hundreds to tens of

thousands of machines [65]. While these systems typically have simple interfaces and

exhibit quick response times, maintaining optimal performance levels over time is a

complex task. Unexpected performance degradations arise frequently, and addressing

them requires substantial human effort[50].

When a performance degradation occurs in a microservice system, the first crucial

step is to identify the root cause. It could stem from any of the system’s software

components, unexpected interactions between these components, or slowdowns in

the network connecting them. Traditionally, the process of identifying the cause has

relied on ad-hoc manual approaches. Developers would rely on raw performance

data collected from individual components and attempt to analyze it to pinpoint

the issue.

However, as microservice systems have grown in scale and complexity, these

ad-hoc processes have become less viable. Analyzing system logs, which is a standard

approach, has become a tedious and intricate task.

Another common approach in analyzing the performance of distributed systems

is to consider the performance behavior of multiple traces. This analysis is often

represented using a histogram, which illustrates the distribution of latencies for

various requests. Within this histogram, it is possible to identify peaks, known as

modes which represent distinct groups or patterns of latency behavior.

Modes in a latency histogram indicate different performance characteristics

or behaviors within the system. Each mode typically represents a specific set of
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conditions or factors that influence the latency of requests. By identifying and

analyzing these modes, developers and system administrators can gain insights into

the different performance profiles or scenarios within the system [46].

For example, a bimodal distribution in the latency histogram may indicate

the presence of two distinct performance patterns. This could suggest that there

are two different paths or workflows within the system, each with its own latency

behavior. By understanding these modes, one can investigate the underlying causes

and potentially optimize the system accordingly.

Modes in the latency histogram can also help in visually identifying potential

outliers or anomalies. For example, plotting a histogram or a density plot of the data

and observing modes can highlight regions where there is a high density of values,

while outliers may appear as isolated points or fall outside these dense regions.

2.1.2 Distributed tracing tools

As seen in the previous sections, microservice architectures involve deploying

numerous service instances that can be dynamically created and destroyed based on

workload demands. Each microservice performs a specific function and communicates

with other services over the network. With this distributed and decentralized nature,

it becomes challenging to gain visibility into how the system as a whole is functioning.

To understand microservice systems’ behaviors and troubleshoot their problems,

it is essential to ensure observability of these systems [36]. Observability refers

to the capability of gaining insights into the internal workings of a system by

systematically collecting and analyzing relevant data. It involves monitoring and

analyzing various signals, logs, metrics, and traces from a system to understand

its behavior, performance, and potential issues. In the context of microservices,

observability is crucial due to the complex and dynamic nature of these systems.

Distributed tracing tools are recognized as important means to achieve observ-

ability in microservice systems. Distributed tracing allows us to track the flow of

requests as they traverse through various microservices [6]. It captures informa-

tion about each service’s involvement in request processing, including timestamps,

dependencies, and any encountered errors or delays.
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By analyzing these traces, operators and developers can gain valuable insights

into the behavior and performance of the microservices. They can identify bottle-

necks, latency issues, and potential areas for optimization. Distributed tracing also

facilitates troubleshooting by providing a detailed view of the request’s journey,

making it easier to pinpoint and analyze the root cause of any problems that may

arise.

Distributed tracing systems continuously collect traces from a microservices

system using the standard defined by OpenTracing [1]. According to this standard,

traces are defined implicitly by their spans. A span represents a unit of work or an

operation within a system. It could be a single function call, a database query, an

RPC call, an HTTP request, or any other discrete operation that occurs within a

microservice system.

A span has different information:

• A parent span.

• A span name (operation name).

• A span kind.

• Start and end time.

• A status that reports whether operation succeeded or failed.

• A set of key-value attributes describing the operation.

• A timeline of events.

• A list of links to other spans.

• A span context that propagates trace ID and other data between different

services.

Each operation within a microservice generates such a span, each with its own

temporal and contextual information.

In a distributed system, with a high volume of requests involving numerous

microservices, collecting and managing tracing data can become complex. Without
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Figure 2.2. Causal relationships between Spans in a single Trace [1]

proper correlation mechanisms, it would be difficult to reconstruct the flow of requests

and understand the interaction between microservices.

In this regard, OpenTracing provides trace correlation mechanisms, which allows

to reconstruct the complete flow of requests through the different microservices.

In OpenTracing, each trace is identified by a unique Trace ID. This Trace ID is

propagated along the request path and is used to correlate spans, which represent

operations within microservices. Each span has its own Span ID, which allows you

to link related spans within a trace. The tracing context, which contains the Trace

ID and Span ID, is propagated between microservices to allow spans to be created

and correctly associated with the current trace. This tracing context propagation

allows you to create a hierarchical trace structure as shown in Figure 2.2, where each

span can be linked to its parent and child span. Through this hierarchical structure,

it is possible to reconstruct the causal flow of operations and understand the path of

requests through the microservices.

2.2 Visual Analytics

In this thesis we present vamp, a visual analytics tool for microservices perfor-

mance analysis.

For this reason, the concept of Visual Analytics is closely related to this work.
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In this section we provide an overview of the concept of Visual Analytics.

2.2.1 Principles of Visual Analytics

Visual Analytics is "the science of analytical reasoning facilitated by interactive

visual interfaces" [10]. Is an integrated approach that combines visualization, al-

gorithmic data analysis, human-computer interaction and analytical reasoning. It

exploits visualization as a tool to integrate human cognition, perception abilities

and human intelligence into the data-analysis process to obtain explanaible results.

Visual Analytics gives higher priority on analyzing data and discovering knowl-

edge in data, rather than just presenting and understanding the data [12].

According to the definition given in [10], the core idea of Visual Analytics is to

integrate the human cognitive, perceptual and reasoning abilities, along with their

knowledge, into the analysis process. The ultimate goal of this integration is to gain

insights from complex data that are challenging to explore using only visualization

or analysis techniques in isolation.

Visual Analytics builds on the principle of "Overview First, Zoom/Filter, Details

on Demand" [52] to facilitate effective data exploration and analysis. This principle

emphasizes the importance of providing users with an initial overview of the data,

allowing them to grasp the overall patterns and trends before delving into specific

details. It enables users to progressively zoom in on areas of interest, apply filters to

refine the view, and request more detailed information as needed. The "Overview

First" aspect of this principle acknowledges that users often need a high-level

understanding of the dataset before they can effectively analyze it. Visual Analytics

tools provide visualizations that offer a broad view of the data, capturing its overall

structure and distribution. This overview allows users to identify general patterns,

outliers, and potential relationships, serving as a starting point for further exploration.

Once users have obtained the initial overview, they can apply the "Zoom/Filter"

approach to focus on specific subsets or aspects of the data. They can zoom in on

particular regions of interest or filter the data based on specific criteria, narrowing

down their analysis to relevant subsets. By interacting with the visualizations, users

can navigate through different levels of detail, revealing more specific information
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and gaining deeper insights. The "Details on Demand" component of the principle

recognizes the importance of providing users with the ability to access more detailed

information when necessary. Users can interact with the visualizations to request

additional details about specific data points, such as numerical values, annotations,

or underlying data sources. This on-demand approach ensures that users can access

the desired level of information precisely when they need it, without overwhelming

them with excessive details. The "Overview First, Zoom/Filter, Details on Demand"

principle supports an iterative and exploratory analysis process. It empowers users to

navigate through data, focus on areas of interest, and progressively drill down to gain

a deeper understanding. By combining an initial overview with interactive zooming,

filtering, and on-demand details, Visual Analytics tools provide users with a flexible

and user-centric environment for data exploration, analysis, and insight generation.

Overall, the "Overview First, Zoom/Filter, Details on Demand" principle forms a

fundamental basis for the design and implementation of Visual Analytics tools. It

guides the development of interactive visualizations that allow users to navigate

complex datasets effectively, uncover meaningful patterns, and make data-driven

decisions.

2.2.2 Visual Analytics Process

The Visual Analytics (VA) process involves a systematic and iterative approach

to data analysis, exploration, and insight generation. It combines visualizations,

analytical techniques, and user interaction to support effective decision-making.

Figure 2.3 presents the typical steps involved in the VA process:

1. Data Acquisition and Preprocessing:The first step in the VA process is to

acquire the relevant data for analysis. This may involve collecting data from

various sources, such as databases, APIs, or files. Once the data is collected, it

needs to be preprocessed and cleaned to ensure data quality and compatibility

with the VA tool. This includes tasks such as data cleansing, integration,

transformation, and formatting.

2. Analytical Techniques and Algorithms: Analytical techniques are employed
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Figure 2.3. Visual Analytics process [12]

to analyze the data within the VA framework. These techniques can include

statistical analysis, machine learning algorithms, data mining methods, or

domain-specific analytical models. The integration of analytical techniques

within the VA process allows users to perform advanced computations and

derive meaningful insights from the data.

3. Visualization: In this step, visualizations are designed to represent the data

effectively. The choice of visualization techniques and types depends on the

characteristics of the data and the analytical goals. The design should consider

the appropriate visual encodings, layout, color schemes, and interactivity to

facilitate data exploration and analysis. The visualizations should align with

the "Overview First, Zoom/Filter, Details on Demand" principle to provide

users with a comprehensive view of the data.

4. Knowledge Discovery and Insight Generation: Based on the interactive explo-

ration and application of analytical techniques, users can discover knowledge

and generate insights. This involves identifying patterns, relationships, corre-

lations, outliers, or trends that were not initially apparent. Visualizations and

analytical results are combined to support the understanding of complex data

and facilitate the extraction of actionable insights.

5. Interaction: Users interact with the visualizations to explore the data at
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different levels of detail. They can zoom in and out, apply filters, select data

subsets, and perform interactive operations to focus on specific areas of interest.

The goal is to identify patterns, trends, anomalies, and potential insights. Users

can perform visual queries, refine their exploration based on the initial findings,

and dynamically adjust the visualizations to gain deeper insights.

6. Visualization update: Iterative Analysis: The VA process is typically itera-

tive, allowing users to refine their analysis, explore alternative hypotheses,

and address new questions or requirements. Users can go back to previous

steps, modify visualizations, adjust parameters, or apply different analytical

techniques based on their evolving understanding and exploration of the data.

The iterative nature of the process allows for deeper insights and a more

comprehensive analysis.

The process follows an iterative loop, continuously cycling from step 4 to step 6

until sufficient insight is gained from decision-making problem-solving. It emphasizes

the integration of human capabilities and computational techniques, leveraging the

strengths of both to extract knowledge and gain deeper insights from complex data.

For this reason, the classinc way of visually exploring data defined in [52] "Overview

first, Zoom/Filter, Details on demand", needs to be extended to the Visual Analytics

Mantra: "Analyze first-Show the important-Zoom,filter and analyze Further-Details

on demand" [30].

Since the Visual Analytics Process is based on visualization and interaction with

it, the succes of the process depends on:

1. the breadth of the collection of visualization techniques

2. the consistency of the design of the vies

3. the ability to interactively remap data attributes to visualizations attributes

4. the set of functions to interact with visualizations and the capabilities that

these functions offer to support the reasoning process. [12]

Visualizations techniques can be classified based on [31]:
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1. Data Types: Visualization techniques can be categorized based on the type

of data being visualized. This can include unidimensional data like temporal

data, bidimensional data like geographic maps and relational tables, text and

hypertext, hierarchies, graphs, etc.

2. Visualization Techniques: Techniques can be classified based on the specific

visualization methods used, such as 2D/3D visualizations, geometrically trans-

formed displays, tree maps, etc.

3. Interaction Techniques: This category encompasses the interactive aspects

of visualization, including techniques like interactive projection, zooming,

distortion, etc. These techniques enable users to manipulate and explore the

visualized data.

It is important to note that these three dimensions of classification—the type of

data, visualization techniques, and interaction techniques—are considered orthogonal.

Orthogonality means that any visualization technique can be combined with any

interaction or distortion technique for any type of data.

Furthermore, it is worth noting that specific systems can be designed to support

different types of data and can employ a combination of visualization and interaction

techniques.

Additionally, there are two main categories of visualization [32]:

1. Data Visualization: is the study of representing data in some systematic form,

including attributes and variables for the unit of information. This category

focuses on visualizing raw data to represent its underlying patterns, trends,

or relationships. It often involves the use of charts, graphs, plots, and other

visual representations to convey information (e.g. bubble chart, scatter plot,

histogram, pie chart...).

2. Information Visualization: is a research domain that concentrates on the use

of visualization methods to assist people understanding data and evaluate or

analyze data. This category is concerned with visualizing complex information,

such as large datasets or interconnected networks, to support exploration, anal-

ysis, and understanding. Information visualization often employs techniques
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like network visualizations, tree maps, scatter plots, etc., to reveal insights

and relationships in the data.

There are several ways to interact with data visualizations:

1. ZOOMING: This interaction allows users to zoom in or out on specific areas

of a visualization to examine details or obtain a broader view. It helps users

focus on specific regions of interest and navigate through the data.

2. OVERVIEW + DETAIL: This technique involves displaying multiple views

simultaneously, combining an overview of the entire dataset with detailed

views of specific portions. It enables users to maintain context while exploring

specific areas in more detail.

3. FISHEYE: The fisheye technique expands or magnifies a focused area within

the overall view. It provides a distorted but detailed representation of the

selected region, allowing users to see fine-grained details while preserving

context.

4. IDENTIFICATION: This interaction displays an identifying label when the

mouse hovers over a specific area or element in the visualization. It provides

additional information or metadata about the selected item, enhancing the

user’s understanding.

5. LINKING: Linking allows the connection of selected elements across multiple

visualizations or graphs. When an element is selected in one view, it highlights

or shows related elements in other linked views. This technique helps users

understand relationships and dependencies between different data points.

6. BRUSHING: allows users to select or highlight specific data points or regions

of interest within a visualization by using a pointing device (e.g., mouse cursor)

to draw a brush-like selection.

Visualizations and interaction techniques can indeed be combined to create

interactive dashboards. An interactive dashboard provides a dynamic and immersive

experience for users, allowing them to explore data, analyze trends, and gain insights

through interactive visualizations.
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Interaction techniques play a critical role in enhancing the usability and interac-

tivity of the dashboard. They enable users to manipulate the visualizations, drill

down into details, filter and sort data, and perform various actions to explore different

aspects of the data. By interacting with the visualizations, users can dynamically

change parameters, apply filters, and interactively explore the data from different

angles, gaining deeper insights and understanding.

By combining visualizations with interactive capabilities, an interactive dashboard

empowers users to actively engage with the data, uncover patterns, and gain insights

in real-time. It promotes an iterative and exploratory approach to data analysis,

allowing users to ask questions, test hypotheses, and make data-driven decisions

effectively.

2.3 Microservices visualizations

2.3.1 Visualizations in practice

Once traces have been collected and processed, distributed tracing tools presents

this data to users using more readable charts and diagrams [6]. The most widely used

visualization technique is the swimlane view [14, 29, 53]. It allows users to manually

investigate individual traces in detail as part of troubleshooting tasks. In the

swimlane view, spans (representing individual operations) are depicted horizontally

and sorted vertically, creating a timeline of a single request as shown in Figure 2.4.

Figure 2.4. Swimlane visualization [55].
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In the swimlane view, the relationships between spans are typically depicted im-

plicitly based on vertical ordering and indentation of span names. Some visualizations

may explicitly show relationships using lines connecting spans [49].

While the swimlane view is the most pervasive visualization approach in dis-

tributed tracing, some distributed tracing tools also provide aggregate visualizations

for analyzing large volumes of traces. These visualizations aim to capture the

system’s behavior as a whole. For instance, Canopy [29] allows operators to extract

per-trace metrics into a tabular form, which can be queried using standard time-series

database interfaces.

Another example is the dependency graph visualization of Jaeger [55], which

shows the relationships and interactions between services, based on the traced data.

This visualization helps in understanding the dependencies, communication patterns

and overall architecture of the system. Jaeger [55] also enables the comparison of

structural aspects of two requests [20].

Commercial APM tools [2], such as Dynatrace [25], AppDynamics [24], or

Instana [23], provide features that support aggregated analysis of end-to-end requests.

The Service Flow feature offered by Dynatrace [26] aims to provide aggregate

workflows of end-to-end requests, along with their associated characteristics. This

feature helps users analyze the relationship between request characteristics and

end-to-end performance behavior.

All these trace visualizations, along with the swimlane view, offer various ways

to explore and analyze distributed trace data, allowing users to troubleshoot issues,

optimize performance, and make informed decisions. The choice of visualization

depends on the specific use case and the insights users seek to extract from the trace

data.

2.3.2 Research on visualizations

Prior research on visualization approaches for distributed systems has primarly

concentrated on the analysis of individual requests or comparison between two

requests.

ShiViz [7] offer a time-space diagram visualization of logged distributed executions,
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explicitly representing the ‘happens before’ relationship between events. ShiViz

contains features to support the following 3 main system understanding tasks:

• ORDERING OF EVENTS: ShiViz space-time diagram explicitly but compactly

represents the relative ordering of events among hosts in the system, capturing

the concurrency between events. ShiViz allows the developer to simplify the

graph by transforming it to eliminate information that is not needed for the

current task.

• MODELS OF INTERACTION: allows you to build subgraphs of events and

search for them in the space-time diagram.

• COMPARISON OF MULTIPLE EXECUTIONS: Ability to present two execu-

tion graphs side-by-side to help developers compare these executions. ShiViz

includes algorithms to highlight differences between execution pairs and sup-

ports grouping executions based on features.

The study of Sambavisan et al. [50] focus specifically on comparing two request-

flow traces with a side-by-side view, difference view and animation between them.

[51].

TraVista [3] is a tool designed for debugging performance issues in a single

trace. TraVista extends the popular single trace Gantt chart visualization with three

types of aggregate data-metric, temporal, and structure data, to contextualize the

performance of the offending trace across all traces.

The research conducted by Davidson and Mace [13] highlights the significance of

visualization in the field of systems research. They emphasize the need for continued

exploration and development of visualization techniques in this domain. The research

by Davidson et al. [14] also includes a qualitative interview study that specifically

focuses on identifying limitations of current distributed tracing tools. The findings

from this study not only reveal the limitations of current distributed tracing tools

but also highlight the areas where further research and development are required.

One such area is the visualization of distributed tracing data, where innovative

visualization techniques can play a crucial role in enabling effective analysis and

comprehension of complex system behaviors.
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To address the challenge of specifying and analyzing transient behavior in mi-

croservices systems, TransVis [5] utilizes novel human-computer interaction methods

to make the tasks of specifying transient behavior as a non-functional requirement

and analyzing its fulfillment more accessible. The approach incorporates chatbot

interactions and visualizations of the system’s resilience to facilitate these tasks.
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Chapter 3

Motivation

Distributed tracing tools encounter numerous challenges that hinder users from

effectively troubleshooting and analyzing system performance [14]. One of the

primary issues is the lack of seamless integration between multiple user interfaces

and tools, requiring manual access to relevant data and impeding efficient navigation.

As we have seen in previous section, often users are more interested in investigate

recurrent response time trends rather than focusing on the performance of individual

requests [46]. Diverse end-to-end response time behaviors may be associated with

specific request characteristics, such as particular RPC execution paths or RPC

performance behaviors. Consequently, engineers may wish to identify these charac-

teristics to uncover potential performance issues, and gather a more comprehensive

picture of the system performance [46, 33, 11].

Distributed tracing tools currently lack sufficient support for this type of analysis,

which often necessitates the concurrent use of multiple visualizations and tools,

such as Jaeger [55] and Kibana [18] [14]. A naive strategy involves initially recog-

nizing repetitive performance behaviors for further investigation, followed by the

examination of individual requests to characterize relevant performance behaviors.

This can be accomplished by detecting “modes” within the end-to-end response

time distribution (for instance, using Kibana), which represent meaningful recurring

performance behaviors. Following this, samples of requests associated with each

mode can be extracted and examined individually (for instance, using Jaeger’s

swimlanes) to identify distinct characteristics that contribute to specific performance
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behaviors or modes.

However, this method can be particularly laborious as it requires manual in-

spection and comparison of multiple requests across diverse visualizations and tools.

Moreover, even when the method is successful, it may not provide a satisfactory

level of confidence.

Indeed, determining the specific characteristics associated with a particular

distribution mode necessitates verifying that these characteristics appear exclusively

in requests that exhibit this particular end-to-end response time behavior.

This task can be challenging when using current tools.
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Figure 3.1. End-to-end response time distribution.

Consider the scenario illustrated in Figure 3.1 , which represents the distribution

of end-to-end response times for a specific type of request, such as loading a website

homepage. As can be observed in the figure, requests demonstrate four distinct

response time behaviors, i.e. modes. Suppose that the rightmost mode is characterized

by a unique request characteristic, specifically an RPC that exhibits slower execution

time. That is, this specific RPC shows increased execution time in all requests

belonging to the rightmost mode ( e.g., due to an expensive task), but not in others.

With the current distributed tracing tools, identifying patterns like this can be

particularly challenging. Current distributed tracing tools lack targeted methods to

simplify the analysis of RPC attributes, such as execution time, and their relationship

with end-to-end response time.

To address this, there is a need for a more interconnected approach that allows
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for direct movement between tools. Moreover, existing tools often present trace data

in a generic manner, failing to consider the broader context of the anomaly being

investigated.

In addition to these limitations, Davidson et al. have pointed out other limi-

tations of current distributed tracing systems by proposing in their research [14]

a qualitative interview study that specifically focuses on identifying limitations of

current distributed tracing tools.

A significant challenge of these systems is the overwhelming amount of informa-

tion presented to users, leading to a high cognitive load. Current tools offer limited

customization options, resulting in cluttered visualizations that include irrelevant

data. Novice users often struggle with information overload, while important in-

formation may be hidden or buried deep within the tools, necessitating repetitive

actions and manual effort.

Troubleshooting workflows also face obstacles as certain interactions are not

adequately supported or require ad-hoc workarounds. For instance, accessing trace

data programmatically for custom analysis can be difficult. Tasks like aggregate

analysis, comparing and navigating traces, and searching for specific attributes

within traces are not well-supported. Users often lack the ability to undo actions or

easily compare traces, resorting to cumbersome methods such as opening multiple

browser windows.

Another challenge lies in the development of these tools. Often, developers focus

on specific visualization approaches while disregarding existing approaches that users

may prefer. Additionally, there is limited feedback on tool usage and improvement,

resulting in a disconnection between users and developers.

Data quality poses further challenges related to the longevity and presentation

of trace data. Tracing backends typically retain data for a limited period, making it

challenging to reproduce analyses. Users also encounter issues with malformed data

and the impact of sampling policies on data accuracy. Existing tools are primarily

designed to visualize ideal trace data, but troubleshooting requires analyzing traces

that deviate from the norm, which can be challenging with certain visualization

systems.
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These challenges also extend to building aggregate analysis tools for tracing

data. Determining the relevant dimensions or subset of data for analysis is not

straightforward [3, 46]. Effectively visualizing high-dimensional trace data and

designing efficient backend systems for filtering and aggregating data remain ongoing

challenges in the development of aggregate analysis tools.

Addressing these challenges necessitates improvements in workflow integration,

customization options, supported interactions, visualization approaches, data quality,

and the development of effective tools for aggregate analysis. By overcoming

these obstacles, distributed tracing tools can enhance users’ ability to efficiently

troubleshoot and analyze distributed systems.
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Chapter 4

VAMP

vamp aims to enhance performance analysis of microservices systems by simplify-

ing the investigation of attributes pertaining to specific RPC and their relationship

with end-to-end response time. In this chapter, following the typical process of

Visual Analytics we present vamp. We start explaining the data acquisition and

preprocessing phase, then we present the vamp dashboard describing its primary

visual components and the interaction modalities. Finally we outline the architecture

and implementation details of vamp.

4.1 VAMP architecture

Microservices 
system

Trace
Collector Trace 

Storage

Preprocessing

Optimized 
Trace Storage

Interactive
Analysis

Dashboard

Figure 4.1. vamp’s Workflow

Figure 4.1 outlines the key architecture components of VAMP. Accordingly to

the Visual Analytics process, the first step of vamp is the acquisition of the data.
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As depicted in figure, there is a Trace Collector (i.e., Jaeger [55]) continuously

collects traces from the microservices system and stores them in a Trace Storage

(i.e., Elasticsearch [17]) using the standard Jaeger format which is based on the

OpenTracing specification [1] described in the previous chapter. In our TraceStorage,

each span within a Jaeger trace is considered as a separate entity and stored as a

separate document in Elasticsearch. Each document corresponds to a single span and

includes all the relevant information about the span such as spanID, operationName,

timestamp, traceId and other metadata as shown in Figure 4.2. Given the large

volume of data collected each day, we have devised a Preprocessing step to enhance

the efficiency of interaction with VAMP. The preprocessed traces are stored in an

Optimized Trace Storage based on MongoDB. Finally, the Dashboard app directly

query the Optimized Trace Storage in order to efficiently generate visualizations.

4.2 Preprocessing

The preprocessing step, operates in batches and is intended to be executed

periodically (e.g., hourly or daily).

For each end-to-end request (i.e. trace), all the spans that compose it are retrieved

by querying the Trace Storage. Then a recursive function is used to traverse the

trace hierarchy and construct the RPC execution path for each span. The function

consider one span at time and by following the parent-child relationship, traverse the

trace hierarchy backward until the root is reached. This happens when the function

process a span whose parentId field is null. At that point, the function returns the

RPC execution path constructed appending at each step the name of the current

span to the existing path.

Once all the RPC execution paths of a trace have been created, these are stored

in a collection in the Optimized Trace Storage based on MongoDB. In this collection,

each RPC execution path will be uniquely inserted: if a trace has two or more spans

with the same RPC execution path, in the collection we will have a single document

referring to this RPC execution path for the considered trace. Each document stores

other fileds in addition to the path name: the traceID, the number of occurrences of

the path in the trace, the observed execution time, the timestamp and the name of
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Figure 4.2. Elasticsearch document
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the root RPC. A document in MongoDB will appear as in the Figure 4.3

Figure 4.3. Path collection document in MongoDB

We can see that the ’occ’ field contain a number representing the number of

occurrences of that RPC execution path in the trace denoted by the traceId field and

the ’latency’ field is a list with as many elements as the number of occurrences of

the RPC execution path, where each element represent the execution time observed

for each occurence of the RPC execution path.

For example in Figure 4.3, the occ field indicates that in the trace identified by

the ’traceId’ field there are 8 occurrences of the RPC execution path "ts-travel-plan-

service_getByCheapest/ts-route-plan-service_getCheapestRoutes /ts-travel2-service_

queryInfo" and the 8 values of the latency list respectively represent the latency for

each of the 8 observed RPC execution paths.

Figure 4.4. Latency collection document

Similarly, VAMP stores the end-to-end response time values, along with related
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information, in a separate MongoDB collection. This information includes the root

RPC, the trce ID, the response time value, and the timestamp (Figure 4.4).

This data reorganization allows for greater flexibility in easily and efficiently

querying the data needed for the vamp dashboard to function properly. As can be

seen from Figure 4.1, the Dashboard app directly query the Optimized Trace Storage

in order to efficiently generate visualizations.

4.3 Visual Components

Once the data has been collected, it must be presented in a way that provide

users with a comprehensive view of the data.

vamp presents data using two main interactive visualization: a tree and a

histogram.

4.3.1 Tree

This visualization component takes inspiration from the Jaeger comparison

tool [55], which allows users to compare two end-to-end requests and highlight their

structural differences. We have redesigned this approach by extending its capabilities

beyond the comparison of two requests, thereby allowing aggregated analysis of

multiple end-to-end requests. In a nutshell, the vamp tree provides an aggregated

view of the RPC workflows performed by a set of end-to-end requests, as shown in

Figure 4.5.

Each node of the tree represents a RPC invocation within a specific execution

path, where the leftmost node represents the root RPC, and edges indicate direct

RPC invocation. For instance, in Figure 4.5 the node labeled as RPCE represents

the execution path RPCA→RPCB→RPCE . As can be observed by the figure, the same

RPC can appear in multiple nodes (e.g., RPCF ), as it can be invoked within multiple

different execution paths. A RPC execution path will appear in the tree if and only

if it is present in at least one of the requests being analyzed. It is worth noting that

when a particular RPC invokes the same RPC multiple times, this leads to a single

node in the tree. In other words, if the RPCA invokes the RPCD multiple times, there
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Direct RPC 
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RPCH RPCK
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RPC execution path

Figure 4.5. Tree

will be only one child node referring to RPCD.

vamp utilizes color encoding to highlight RPC execution paths that are worthy

of investigation based on their attribute values. It currently supports the analysis

of two kinds of attributes: execution time and frequency. The first one denotes

the (average) execution time of the RPC within a specific execution path in each

request, while second one indicates the path frequency, i.e. how many times it occurs

within each request. We use color encoding to emphasize RPC execution paths with

higher variance in their attributes. The key intuition here is that RPC execution

paths showing higher variance in their attributes are likely to manifest different

behaviors that can potentially affect the end-to-end response time. For instance, a

higher frequency of a particular RPC invocation within a request could result in a

longer end-to-end response time. Or similarly, a slower RPC execution time may

correspond to a prolonged end-to-end response time.

We employ a continuous color scale to depict the variability in the attribute values

associated. This scale is based Coefficient of Variation (CV) [19], i.e. a standardized

measure of dispersion that is defined as the ratio of the standard deviation to the

mean. As execution times in distributed systems are well known to be subject to long

tails [16], when dealing with this attribute, we apply outlier filtering by removing

execution times values greater than the 99th percentile. A CV of 0 results in a white
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node, indicating no variability. On the other hand, a CV greater than or equal to

1 results in a red node, suggesting a high variability in the attributes values. The

shade of color gradually transitions from white to red as the CV value increases.

4.3.2 Histogram

The vamp histogram component (shown in 4.6) depicts a traditional distribution

plot of the end-to-end response time.
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Figure 4.6. Histogram

These kinds of visualizations are frequently used in practice for performance

analysis, and are provided by several tools, e.g., Kibana [18]. According to recent

research [14], understanding the distribution of end-to-end response times stands as

core activity in modern performance analysis practice. The histogram component

provided by vamp aims to facilitate this process by supporting the identification of

specific performance behaviors that are worthy of investigation. The user can identify

“modes” in the response time distribution, which indicate meaningful recurring

performance behaviors , and starts a targeted investigation on these requests, as we

will detail in the subsequent subsection.

4.4 Interactions

The core insight behind vamp is to make explicit the relationship between RPC

attribute values, such as the frequency of RPC invocation within a request or the

associated execution time, and the end-to-end response time.

To do this, the tool includes several features and interactions typical of visual
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analytics. One of the key interactions is the link between the two main visualizations:

the RPC execution tree and the end-to-end response time histogram. This linking

allows users to explore the relationship between RPC attributes and response time in

both directions. Through direct analysis, users can interact with the tree to examine

how specific attribute values, related to a particular RPC execution path, affect

end-to-end response time. This type of analysis helps identify which attributes can

significantly impact response time and understand how they vary along execution

paths. On the other hand, through backward analysis, users can investigate how

specific end-to-end response time behaviors are associated with certain RPC attribute

values. This helps identify which attributes may be related to which response time

patterns and better understand the causes of slower or faster performance. In this

case, VAMP provides the brushing interaction, which allows users to highlight a

region of interest in the response time histogram. By focusing on a specific area of

the histogram, users can explore the RPC attributes associated with that specific

region and analyze its characteristics in detail. In addition, vamp also offers the

overview + detail interaction mode. Users can interact with a node of the RPC

execution tree to maintain an overview of this visualization while simultaneously

viewing detailed information about the specific RPC execution path through different

visualizations triggered by the interaction. These different interaction modes allow

users to explore the relationship between RPC attributes and end-to-end response

time in a flexible and in-depth way, making it easier to analyze and understand the

collected data.

In the following, we provide detailed descriptions of these interaction modalities.

As seen befor, vamp supports bidirectional analysis, allowing users to initiate their

analysis from either the tree (forward analysis) or the histogram (backward analysis).

4.4.1 Forward analysis

Figure 4.7 depicts an illustrative example of forward analysis. By examining

the tree, the user can identify “suspicious” RPC execution paths that exhibit high

variability in the corresponding attribute values. For instance, when analyzing the

execution time attributes, the user can identify RPCs that show highly varying
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Figure 4.7. Forward Analysis

execution times, and, by clicking on the corresponding node, they can inspect the

recurring execution time behaviors associated with the path, displayed in the form

of a bar chart, as shown in Figure 4.7.

Each bar refer to specific execution time range (see y-axis labels), and it shows

the percentage of requests with RPC execution time falling in that range. In order

to identify meaningful ranges, we employ a widely-used clustering algorithm, namely

K-means [39]. In particular, we run the algorithm on-the-fly after the user click with

k ranging from 2 to 5 and we select the results showing the highest silhouette score

[47]. Each bar represents a meaningful recurring execution time behavior, and the

user can click on each bar to see how this behavior reflect in the end-to-end response

time. This relation is shown by highlighting in red the area of the distribution that

shows this particular RPC execution time behavior. For instance, in Figure 4.7, we

can observe that when the selected RPC has execution time ranging between 400

and 600 milliseconds, it can lead to end-to-end response times that range between

700 and 800 milliseconds. Understanding these kind of relationship would have

been way more challenging when using present tools. It is worth to notice the same

process also applies when analyzing different RPC attributes, such as occurences.
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4.4.2 Backward analysis
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Figure 4.8. Backward Analysis

In the backward analysis, the user can start its investigation directly from the

histogram component. The user can select a specific range of end-to-end response

time using a slider selector, as shown in Figure 4.8. This selection trigger an update

in tree component color scheme, shifting its semantic from variability to divergence.

In other words, the updated color scheme will now denote the degree of divergence

in the attribute values of the selected set of requests (i.e. those that show end-to-end

response time in the selected range) when compared to those in others requests. A

red node indicates that the corresponding RPC execution path show considerably

different attributes values in the selected requests when compared to other requests,

suggesting a possible relationship between the selected end-to-end response time

and the RPC execution path. Conversely, a white node indicates similar attributes

values, and therefore a weak relation. We quantify the degree of divergence using

Kullback-Leibler divergence [9], where values close to 0 indicates nearly identical

distributions (white), while values close to ≥1 indicates highly different distributions
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Figure 4.9. vamp’s Dashboard

(red).

The user can then delve deeper into each RPC execution time behavior by clicking

on the corresponding node. This action lets appear at screen two new histograms

(in the bottom right corner) representing the distributions of the execution time

in the selected RPC execution path, respectively in the selected requests (in red)

and in other requests (in grey). In doing so, the user can effectively analyze how

particular ranges of the end-to-end response time distribution correlate with specific

RPC attribute values.

4.5 Dashboard

Figure 4.9 outlines the vamp dashboard. As can be observed by the figure the

two main visual components, namely the tree and the histogram, are positioned

in the center-left and in the upper-right corners, respectively. The space in the

bottom-right is intentionally left blank and will used to display supplementary

visualization components during the interaction, e.g., the bar chart (for forward

analysis) and the two histograms (for backward analysis).

It’s worth noting that vamp is specifically designed to assist in analyzing requests

from the same class, i.e. those originating from the same root RPC. As part of this
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Figure 4.10. Double-click interaction

process, the user is required to first select the root RPC and the RPC attribute (i.e.

execution time or path frequency) to be investigated, before proceeding with the

actual analysis.

The user can select the root RPC using either a dropdown menu A or a search

text-box B . Similarly, the RPC attribute (execution time or frequency) to be

analyzed can be selected using a dropdown menu D . Additionally, the dashboard

includes a date-time range selector C , where the user can specify the start and

end date-times. This feature allows for analyses at different time granularities (e.g.,

monthly, weekly, and daily) or over specific time ranges known to include system

anomalies.

To enhance user experience during the interaction with tool, vamp support pinch

gestures to enable zoom in and zoom out of the tree.

In addition, it allows the user to hide the RPCs invoked within a particular

execution path by double-clicking on the corresponding node. As we can see in

Figure 4.10, on the root node of the collapsed subtree, will appear a "+" denoting

the fact that this node can be expandend. This symbol will have the color of the

node in the subtree with greater variability in order to not lose the information that

in the collapsed subtree there may be some nodes that show high variability in the
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corresppnding attribute values.

4.6 Implementation

vamp currently supports distributed traces stored in the Jaeger [55] format using

Elasticsearch [17] as Trace Storage and preprocessed traces stored in MongoDB

as Optimized Trace Storage, but they can be easily extended to other technologies.

The dashboard and visual components have been developed using D3.js [8], which

handles the visualization rendering, and Flask [45], which serves as the backend

service. The preprocessing scripts are implemented in Python.
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Chapter 5

Evaluation

Our experimental evaluation centre around one main research question:

To what extent does vamp support performance analysis?

In this chapter, we first describe the methodology used to gather the answer. Then,

we report and discuss the results of the experimental evaluation.

5.1 Methodology

We apply vamp on 33 datasets generated from TrainTicket[64]. At the time of

writing, TrainTicket is the largest and most complex open source microservice-based

system (within our knowledge), and it has been widely used in previous software

engineering research [56, 61, 36, 60, 22, 65]. TrainTicket provides typical train ticket

booking functionalities such as ticket enquiry, reservation, payment, change, and user

notification. It involves 41 microservices implemented in four different programming

languages (i.e. Java, Python, Node.js, and Go), and it utilizes Jaeger [55] and

Elasticsearch [17] for collecting and storing distributed traces.

Each dataset of our study contains distributed traces related to one specific root

RPC of the system, which are stored on Elasticsearch using the standard Jaeger

format. The datasets used in our study fall into two categories.

The first category of datasets is generated using a methodology similar to that

presented in [56, 11]. As shown in Figure 5.1, initially, the system’s source code is

modified to inject random performance issues. Following this, load testing sessions
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Figure 5.1. First kind dataset generation process

are run to simulate user interactions with the system and generate distributed traces.

Each injected performance issue affects approximately 10% of requests, introducing

a delay into one specific RPC.

To generate a dataset, we first select two random RPCs that will be impacted

by the performance issues. Subsequently, we choose a random delay to increase

the end-to-end response time by x%, where x ∈ {10, 20, 30}. In addition, in half

of the datasets, we inject a random delay of y% (with y ∈ {10, 20, 30}) into an

asynchronous RPC, which does not produce any effect on the end-to-end response

time. This is a common practice used to test the robustness of pattern detection

approaches in the context of microservices systems [11, 56, 33]. After modifying

the system accordingly, we conduct load testing sessions to generate the distributed

trace datasets. Each load testing session involves 20 synthetic users, simulated by

Locust [28]. Each user makes a request to the system and randomly waits between 1

and 3 seconds before making the next request. Each session lasts for 20 minutes.

Using this methodology, we generate 20 datasets featuring various combinations

of performance issues that affect different RPCs with different delays. For a more

detailed explanation of this process, we refer readers to our previous work [56].

The second kind of datasets does not involve any performance issue injection,
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Figure 5.2. Second kind dataset generation process

but it is generated using a more elaborate workload generator as shown in Figure 5.2.

Similarly to recent studies [38, 37] we use load mixtures that involve multiple types of

simulated users (i.e. load drivers), where each user type performs different classes of

requests on the system. For example, some types of user may only visit the homepage

and subsequently search trains for some random locations, while others may first

login and then book random tickets. Besides this, we also ensure that the number

of simulated users per type keeps changing over time. In this way, workloads will

more closely resemble real-world ones, as they generate mixtures of different classes

of requests that change over time [4]. To this aim, we slightly modified PPTAM, a

workload generator that involves 5 different user types, to continuously change the

number of users of each type at run-time. Overall the number of simultaneous users

ranges from a minimum of 20 to a maximum of 31, and the load testing session lasts

for 1 hour. This process leads to 13 distinct datasets, each one related to a different

API.

To enhance clarity throughout the rest of the article, we will use specific notations

for different categories of datasets. Datasets characterized by performance issues

(i.e. first category) will be referred to as D̂i, where 1 ≤ i ≤ 20. Conversely, datasets

free from performance issues (i.e. second category) will be denoted as Di, with

1 ≤ i ≤ 13.

To assess the effectiveness of our approach, two authors conducted manual

inspections of the 33 distributed trace datasets using vamp. For the first type of
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dataset, our evaluation focused on determining the extent to which vamp facilitated

the identification of the injected performance issues. Conversely, for the second type

of dataset, our evaluation centered around assessing vamp’s ability to support the

understanding of specific end-to-end response time behaviors.

5.2 Results

vamp has proven to be remarkably effective in identifying performance issues,

throughout all the datasets featuring injected performance issues. The analysis

was straightforward for the majority of the datasets (18 out of 20), demanding

minimal interaction with vamp. In these datasets, both forward and backward

analysis demonstrated comparable effectiveness, with no noticeable difference in the

effort needed to pinpoint the issues. Due to space constraints, we are unable to

present the exhaustive results of our analyses across all datasets. However, we have

included a selection of representative examples that underscore both the utility and

potential challenges associated with employing vamp. Additionally, for the sake of

completeness, we have made available screenshots capturing interactions with vamp

across all the datasets in a supplementary replication package [35].

Figure 5.3 showcases an example of forward analysis using the dataset D̂2. As

depicted in Figure 5.3a, vamp significantly streamlines the identification of the

two RPCs impacted by performance issues, i.e. the ones highlighted in bright red.

Following this, the user can select these nodes to investigate correlations between

specific RPC execution times and end-to-end response times. For example, the

screenshot on Figure 5.3b reveals that the selected RPC execution path (highlighted

in green) exhibits two distinct execution time behaviors: in 9.87% of the requests,

the RPC ts-travel-service_getRouteByTripId has an execution time ranging from

27.46 to 33.67 milliseconds, and in the remaining 90.13% of requests, the execution

time ranges from 2.62 to 11.25 milliseconds. This screenshot displays the view

of vamp during the investigation of the first behavior, that is, after clicking on

the corresponding bar (highlighted in red). As evident from the figure, vamp

reveals that all the requests with an execution time ranging from 27.46 to 33.67

milliseconds in the selected RPC execution path fall within a specific region of the
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(a)

(b)

Figure 5.3. Forward analysis on execution time for dataset D̂2.
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end-to-end response time distribution, as shown by the red highlight in the histogram.

Our analysis confirmed that the performance issue had indeed impacted the RPC

ts-travel-service_getRouteByTripId.

Figure 5.4 offers another example of how vamp allows users to rapidly identify

the RPC responsible for a particular end-to-end response time deviation. Specifically,

this figure demonstrates an instance of a vamp backward analysis using the dataset

D̂9. The screenshot in Figure 5.4 shows that by selecting a specific range of end-to-

end response times, the user can immediately pinpoint the RPC execution paths

that display significantly divergent behavior in the execution time (highlighted in

bright red). The screenshot on Figure 5.4b displays the investigation of one of

these node (i.e. the one highlighted in green), illustrating how vamp assists users

in comprehending the correlation between specific RPC execution times and the

selected range of end-to-end response times. For instance, it is noticeable that when

the RPC ts-travel-service_getRouteByTripId has an execution time exceeding 27

milliseconds, it results in an end-to-end response time that falls within the range of

137 and 168 milliseconds.

Another notable feature of vamp is its ability to swiftly debunk fluctuations

in RPC execution time that have no impact on the end-to-end response time For

instance, Figure 5.5 illustrates two distinct execution time behaviors in the selected

RPC ts-order-service_calculateSoldTicket: one ranging between 33.42 and 55.95

milliseconds, and another between 1.03 and 14.96 milliseconds. Upon inspecting

both these behaviors through vamp, no significant correlation with the end-to-end

response time was found. As illustrated in Figures 5.5a and 5.5b, the selected

execution time behaviors (i.e. the bars highlighted red) are evenly distributed across

the end-to-end response time distribution, implying a lack of notable correlation

with specific regions of the end-to-end response time. This indicates that even if the

RPC execution time varies drastically from one request to another, it does not have

any significant impact on the end-to-end response time.

In our evaluation, vamp generally exhibited similar effectiveness with both for-

ward and backward analysis. However, there are certain scenarios where forward

analysis proved to be more effective, particularly when multiple performance issues
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(a)

(b)

Figure 5.4. Backward analysis on execution time for dataset D̂9.
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(a)

(b)

Figure 5.5. Forward analysis on execution time for dataset D̂1.
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(a)

(b)

Figure 5.6. Forward analysis on execution time for dataset D̂19.
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lead to an increase in end-to-end response time that overlaps within the same range.

Within our datasets, we encountered two such scenarios, specifically in D̂4 and D̂19.

Figure 5.6 showcases an example of forward analysis on D̂19. As can be seen, the

RPC ts-basic-service_queryForStationId (highlighted in green) shows three distinct

execution time behaviors. Two of these behaviors lead to shift in the end-to-end

response time behavior, which falls in a similar range of the distribution. This can be

noticed when examining Figure 5.6a, which highlights the region of the response time

distribution when ts-basic-service_queryForStationId has execution time ranging

between 7.84 and 17.02 milliseconds, and Figure 5.6b, which does the same for

execution times between 4.67 and 7.81 milliseconds. Upon a more detailed investiga-

tion into one of the RPCs called by ts-basic-service_queryForStationId, specifically

ts-station-service_queryForStationId, we found that one of these behaviors was

caused by an issue in the called RPC, while the other was due to an issue within

the RPC itself. When using backward analysis, identifying these issues proved to be

significantly more challenging. This fact suggests that when multiple issues cause

an increase in end-to-end response time within the same range, forward analysis

may be the more suitable approach. However, it is worth noting that these scenarios

are typically more complex to analyze and often necessitate a greater number of

interactions with the tool.

With regards to the 13 datasets in the second category, we found that a sub-

stantial majority of them - precisely 11 datasets - feature a unique mode in the

end-to-end response time distribution. Given the objectives of our analysis, these

cases were not considered. Consequently, we used two datasets for our evalua-

tion. The first dataset, D_1, consists of requests originating from the root RPC

ts-travel-plan-service_getByCheapest, while the second dataset, D_2, comprises

requests initiated from ts-travel-service_queryInfo. vamp enabled us to character-

ize the correlation between the frequency of each RPC execution path and specific

modes of the end-to-end response time. Figure 5.7 provides an example of this

characterization, illustrating that each mode of the end-to-end distribution cor-

responds to a specific number of invocations of a selected RPC execution path

(highlighted in green). For example, as depicted in Figure 5.7c, the right-most
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mode is characterized by 14 invocations of the path ts-travel-service_queryInfo

→ ts-ticketinfo-service_queryForStationId. Similarly, the center mode is charac-

terized by 6 invocations of this path, while the left-most mode is marked by 2

invocations. Uncovering such patterns using traditional observability tools would

have been notably challenging.
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(a)

(b)
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(c)

Figure 5.7. Forward analysis on frequency for dataset D2.

Summing up, we answer our RQ as follows: vamp proved to be effective in

supporting performance analysis of microservices. In 18 out of the 20 datasets

involving performance issues, we were able to rapidly identify the affected RPCs,

their corresponding execution time behaviors, and their relationship with end-

to-end response time. However, in a few specific cases (2 out of 20 datasets), the

analysis proved to be more challenging, necessitating a greater number of interactions

with vamp. Moreover, our evaluation demonstrates how vamp can facilitate an

understanding of how structural differences in requests (i.e. varying frequencies of

RPC execution paths) influence end-to-end response time. In both datasets utilized

for our evaluation, we successfully disclosed the impact of the frequency of each

RPC execution path on end-to-end response time.
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Chapter 6

Conclusions

In this thesis, we have analysed the key concept behind the microservices ar-

chiteture. We have studied how to analyse the performance of this systems and the

importance of using distributed tracing tools for this task.

Then we have analysed the limitations of existing tools and, starting from them

we have proposed vamp, a novel visual analytics tool for microservices performance

analysis.

VAMP overcomes the limitations of current distributed tracing tools by providing

a wide set of interactive visualizations. The tool enable at once the analysis of the

performances of multiple ent-to-end requests of microservice system eliminating

the need to switch between different tools and visualizations. By providing the

possibility to interact with the proposed visualizations, vamp facilitates the analysis of

request recurrent characteristics and their relation w.r.t. the end-to.end performance

behavior.

To asses the effectiveness of our approach, we have conducted an extensive

evaluation using 33 datasets generated from an established open-source microservices

system, we show that vamp can be effectively employed to identify (i) the RPCs

impacted by delays, (ii) the variations in RPC execution time caused by the issue, and

(iii) the specific range of end-to-end response time related to the issue. Furthermore,

our findings demonstrate how vamp can be used to better understand the relationship

between the frequency of specific RPC execution paths and end-to-end response

time.
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For future work, we aim to broaden the capabilities of vamp to include additional

RPC attributes, such as HTTP headers. Furthermore, we plan to enhance the

efficiency of our tool to facilitate its transition to practice. As part of this process,

we intend to validate our future improvements using real-world distributed traces from

large-scale microservices systems, similar to those shared by Alibaba [40]. Finally,

we plan to deploy vamp as a service for the SoBigData research infrastructure and

community1.

1SoBigData is a research infrastructure that has the goal of enhancing interdisciplinary and

innovative research on the multiple aspects of social complexity by combining data and model-

driven approaches. SoBigData emphasizes the concept of responsible data science. Consequently,

SoBigData RI develops methodologies and approaches to put into practice the FAIR (Findable,

Accessible, Interoperable, and Reusable) and FACT (Fair, Accurate, Confidential, and Transparent)

principles. For additional information, please visit www.sobigdata.eu.

www.sobigdata.eu
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