
VAMP: Visual Analytics for Microservices Performance
Luca Traini

University of L’Aquila, Italy
luca.traini@univaq.it

Jessica Leone
University of L’Aquila, Italy

jessica.leone@student.univaq.it

Giovanni Stilo
University of L’Aquila, Italy
giovanni.stilo@univaq.it

Antinisca Di Marco
University of L’Aquila, Italy
antinisca.dimarco@univaq.it

ABSTRACT

Analysis of microservices’ performance is a considerably challeng-
ing task due to the multifaceted nature of these systems. Each
request to a microservices system might raise several Remote Pro-
cedure Calls (RPCs) to services deployed on different servers and/or
containers. Existing distributed tracing tools leverage swimlane
visualizations as the primary means to support performance analy-
sis of microservices. These visualizations are particularly effective
when it is needed to investigate individual end-to-end requests’
performance behaviors. Still, they are substantially limited when
more complex analyses are required, as when understanding the
system-wide performance trends is needed.

To overcome this limitation, we introduce vamp, an innovative
visual analytics tool that enables, at once, the performance analysis
of multiple end-to-end requests of a microservices system. vamp
was built around the idea that having a wide set of interactive vi-
sualizations facilitates the analyses of the recurrent characteristics
of requests and their relation w.r.t. the end-to-end performance
behavior. Through an evaluation of 33 datasets from an established
open-source microservices system, we demonstrate how vamp aids
in identifying RPC execution time deviations with significant im-
pact on end-to-end performance. Additionally, we show that vamp
can support in pinpointing meaningful structural patterns in end-to-
end requests and their relationship with microservice performance
behaviors.

CCS CONCEPTS

• Software and its engineering → Software performance;
Maintaining software; Software evolution; •Human-centered

computing → Visual analytics; Visualization toolkits.

KEYWORDS

Microservices, Distributed Tracing, Performance Analysis

ACM Reference Format:

Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco. 2024.
VAMP: Visual Analytics forMicroservices Performance. In The 39th ACM/SIGAPP

Symposium on Applied Computing (SAC ’24), April 8–12, 2024, Avila, Spain.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’24, April 8–12, 2024, Avila, Spain

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0243-3/24/04.
https://doi.org/10.1145/3605098.3636069

ACM, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/
3605098.3636069

1 INTRODUCTION

Microservices have emerged as a pivotal change in the software
industry, paving the way to a novel paradigm for structuring the
software development process. This novel approach entails multiple
independent teams responsible “from development to deploy” [31]
of loosely coupled independently deployable services [30, 31]. Due
to their modular nature, microservices are particularly well-suited
for the modern software industry, where rapidly releasing software
updates and enhancements is a critical competitive advantage [34].

Although beneficial in many aspects, microservices also intro-
duce new challenges, especially when it comes to maintaining
consistent software performance. This complexity arises from var-
ious elements. Firstly, the inherent complexity of these systems
often hinders the adoption of proactive measures for performance
assurance[38, 45], such as pre-production performance testing [17,
21, 42]. Secondly, these proactive measures are often hampered
by time and resource constraints due to the substantial pressure
to deliver fast-to-market [34, 40]. Thirdly, microservices systems
typically exhibit an emergent performance behavior in the field that
is hard to predict in advance [45]. Finally, these systems undergo
continuous software changes, with multiple releases occurring on
a daily basis, and handle highly variable workloads [3], which
make them more vulnerable to unforeseen performance regres-
sions [43, 45].

These challenges have led to an increased interest in the concept
of observability [29], i.e., the ability to have a holistic understanding
of the system’s performance by analyzing its logs, traces, and met-
rics. Distributed tracing tools [32] are today widely used in practice
to enhance observability of microservices systems [28]. These tools
track and record the propagation of requests as they flow through
different RPCs and services of a microservices system [35], and
provide visual aids to support performance analysis of end-to-end
requests, e.g., swimlane visualizations [10, 37, 39].

Despite their utility, distributed tracing tools have recently been
criticized for their limited support for performance analysis [10]. A
common use case for these tools is the analysis of the system-wide
performance behavior [32], such as understanding the response
time distributions of end-to-end requests [10]. However, current
distributed tracing tools often fall short in this area, necessitat-
ing a switch between various visualization tools, which can make
the process cumbersome and time-consuming [10]. Indeed, they
primarily focus on the analysis of individual requests, which has

https://orcid.org/0000-0003-3676-0645
https://orcid.org/0000-0002-2870-8161
https://orcid.org/0000-0002-2092-0213
https://orcid.org/0000-0001-7214-9945
https://doi.org/10.1145/3605098.3636069
https://doi.org/10.1145/3605098.3636069
https://doi.org/10.1145/3605098.3636069

SAC ’24, April 8–12, 2024, Avila, Spain Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco

limited value unless it is compared with the performance behavior
of the entire corpus of requests [2, 10, 32].

In this paper, we introduce vamp, an innovative visual analytics
tool designed to enhance the performance analysis of microser-
vices systems. vamp extends the conceptual proposal of Leone and
Traini [22]. The fundamental idea underpinning vamp is to simplify
the understanding of the relationship between request character-
istics and end-to-end response time behavior through interactive
charts and color-encoding techniques. vamp comprises two main
visualization components: an interactive tree that illustrates the
workflow in terms of RPCs for multiple end-to-end requests, and
an interactive histogram representing the end-to-end performance
behavior of the requests under analysis. Interaction with these vi-
sual components aids in identifying the unique characteristics of
certain RPC execution paths with respect to some specific system
performance behaviors.

We evaluate vamp using 33 datasets derived fromTrainTicket [47],
an open-source microservices system widely utilized in previous
software engineering research [23, 41, 46]. Our findings demon-
strate that vamp enables the identification of notable and recurrent
request characteristics associated with specific end-to-end response
time behaviors.

A video of vamp in action can be accessed at https://youtu.be/
qMVOMt06EJE.

2 MOTIVATION

0 ms 170 ms 300 ms

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500

N
o.
re
qu

es
ts

Latency
(milliseconds)

Figure 1: Swimlane visualization.

The swimlane visualisation is the canonical way to visualize
individual requests within distributed tracing tools [9, 19, 37, 39].
Fig. 1 shows a representative example of a swimlane visualization.
The visualization depicts a timeline of a single request, with RPCs
depicted horizontally and sorted vertically to highlight their rela-
tionships. This type of visualization proves highly beneficial for
performance analysis of individual requests, allowing for a detailed
investigation into how each RPC affects the overall end-to-end
response time.

However, these visualizations exhibit certain limitations when it
comes to conducting more complex performance analyses. For in-
stance, observing the performance of individual end-to-end requests
might result in misleading insights if not contextualized appropri-
ately [10]. Indeed, a request’s response time can only be deemed
anomalous when compared with other requests of the same type
[2]. Additionally, engineers are often more inclined to investigate
recurrent response time trends rather than focusing on the per-
formance of individual requests [32]. Diverse end-to-end response
time behaviors may be associated with specific request characteris-
tics, such as particular RPC execution paths or RPC performance

behaviors. Consequently, engineers may wish to identify these char-
acteristics to uncover potential performance issues, and gather a
more comprehensive picture of the system performance [8, 20, 32].

Distributed tracing tools currently lack sufficient support for this
type of analysis, which often necessitates the concurrent use of mul-
tiple visualizations and tools, such as Jaeger [39] and Kibana [13] [10].
A naive strategy involves initially recognizing repetitive perfor-
mance behaviors for further investigation, followed by the examina-
tion of individual requests to characterize relevant performance be-
haviors. This can be accomplished by detecting “modes” within the
end-to-end response time distribution (for instance, using Kibana),
which represent meaningful recurring performance behaviors. Fol-
lowing this, samples of requests associated with each mode can be
extracted and examined individually (for instance, using Jaeger’s
swimlanes) to identify distinct characteristics that contribute to
specific performance behaviors or modes.

However, this method can be particularly laborious as it requires
manual inspection and comparison of multiple requests across di-
verse visualizations and tools. Moreover, even when the method
is successful, it may not provide a satisfactory level of confidence.
Indeed, determining the specific characteristics associated with a
particular distribution mode necessitates verifying that these char-
acteristics appear exclusively in requests that exhibit this particular
end-to-end response time behavior. This task can be challenging
by using current tools.

0 ms 170 ms 300 ms

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500

N
o.
re
qu

es
ts

Latency
(milliseconds)

Figure 2: End-to-end response time distribution.

Consider the scenario illustrated in Fig. 2, which represents the
distribution of end-to-end response times for a specific type of re-
quest, such as loading a website homepage. As can be observed in
the figure, requests demonstrate four distinct response time behav-
iors, i.e., modes. Suppose that the rightmost mode is characterized
by a unique request characteristic, specifically an RPC that exhibits
slower execution time1 . That is, this specific RPC shows increased
execution time in all requests belonging to the rightmost mode
(e.g., due to an expensive task), but not in others. With the cur-
rent distributed tracing tools, identifying patterns like this can be
particularly challenging. Current distributed tracing tools lack tar-
geted methods to simplify the analysis of RPC attributes, such as
execution time, and their relationship with end-to-end response
time.

1Henceforth, the term execution time will be used to denote the response time of a
generic RPC. Conversely, end-to-end response time will refer to the response time of
the root RPC that triggers all subsequent RPC invocations.

https://youtu.be/qMVOMt06EJE
https://youtu.be/qMVOMt06EJE

VAMP: Visual Analytics for Microservices Performance SAC ’24, April 8–12, 2024, Avila, Spain

Root RPC

Direct RPC
invocation

RPCA

RPCB

RPCE RPCJ

RPCF

RPCC RPCG

RPCD

RPCH RPCK

RPCF

RPC execution path

(a) Tree

0
100
200
300
400
500
600
700
800
900
1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency
(milliseconds)

(b) Histogram

Figure 3: Visual Components

3 VAMP

vamp aims to enhance performance analysis of microservices sys-
tems by simplifying the investigation of attributes pertaining to
specific RPC and their relationship with end-to-end response time.
In this section, we first introduce the core insights that underpin
vamp, its primary visual components, and the interaction modality.
Then, we describe how these visual components fit within the vamp
dashboard, and detail the vamp architecture and implementation.

3.1 Visual Components

The core insight behind vamp is to make explicit the relationship
between RPC attribute values and end-to-end response time. RPC
attributes could refer to several aspects, such as the frequency of
RPC invocation within a request, or the associated execution time.
vamp leverages two main interactive components to highlight this
relationship: a tree and a histogram. The tree provides an aggregated
view of the requests’ workflows in terms of RPC invocations, while
the histogram displays a traditional distribution plot of the end-
to-end response time. Users can interact with the tree to examine
how specific attribute values, related to a particular RPC execution
path, influence the end-to-end response time; we refer to this as
forward analysis. Conversely, starting from the histogram, users can
investigate how specific end-to-end response time behaviors are
associated with certain RPC attribute values; this is referred to as
backward analysis. In the following, we will first describe in detail
the characteristics of these two main visual components. Then, in
the subsequent subsection, we will detail the interaction modality
of vamp.

3.1.1 Tree. This visualization component takes inspiration from
the Jaeger comparison tool [15], which allows users to compare two
end-to-end requests and highlight their structural differences. We
have redesigned this approach by extending its capabilities beyond
the comparison of two requests, thereby allowing aggregated anal-
ysis of multiple end-to-end requests. In a nutshell, the vamp tree
provides an aggregated view of the RPC workflows performed by a
set of end-to-end requests, as shown in Fig. 3a. Each node of the
tree represents a RPC invocation within a specific execution path,
where the leftmost node represents the root RPC, and edges indicate
direct RPC invocation. For instance, in Fig. 3a the node labeled as
RPC𝐸 represents the execution path RPC𝐴→RPC𝐵→RPC𝐸 . As can be
observed by the figure, the same RPC can appear in multiple nodes
(e.g., RPC𝐹), as it can be invoked within multiple different execution
paths. A RPC execution path will appear in the tree if and only if it
is present in at least one of the requests being analyzed. It is worth
noting that when a particular RPC invokes the same RPC multiple
times, this leads to a single node in the tree. In other words, if the
RPC𝐴 invokes the RPC𝐷 multiple times, there will be only one child
node referring to RPC𝐷 .

vamp utilizes color encoding to highlight RPC execution paths
that are worthy of investigation based on their attribute values. It
currently supports the analysis of two kinds of attributes: execution
time and frequency. The first one denotes the (average) execution
time of the RPC within a specific execution path in each request,
while second one indicates the path frequency, i.e., how many times
it occurs within each request. We use color encoding to empha-
size RPC execution paths with higher variance in their attributes.
The key intuition here is that RPC execution paths showing higher
variance in their attributes are likely to manifest different behav-
iors that can potentially affect the end-to-end response time. For
instance, a higher frequency of a particular RPC invocation within
a request could result in a longer end-to-end response time. Or sim-
ilarly, a slower RPC execution time may correspond to a prolonged
end-to-end response time.

We employ a continuous color scale to depict the variability in
the attribute values associated. This scale is based on the Coefficient
of Variation (CV)[14], i.e., a standardized measure of dispersion
that is defined as the ratio of the standard deviation to the mean.
As execution times in distributed systems are well known to be
subject to long tails [11], when dealing with this attribute, we apply
outlier filtering by removing execution times values greater than
the 99𝑡ℎ percentile. A CV of 0 results in a white node, indicating
no variability. On the other hand, a CV greater than or equal to 1
results in a red node, suggesting a high variability in the attribute
values. The shade of color gradually transitions from white to red
as the CV value increases.

3.1.2 Histogram. The vamp histogram component (shown in Fig. 3b)
depicts a traditional distribution plot of the end-to-end response
time. These kinds of visualizations are frequently used in practice
for performance analysis, and are provided by several tools, e.g.,
Kibana [13]. According to recent research [10], understanding the
distribution of end-to-end response times stands as core activity
in modern performance analysis practice. The histogram compo-
nent provided by vamp aims to facilitate this process by supporting

SAC ’24, April 8–12, 2024, Avila, Spain Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco

0
100
200
300
400
500
600
700
800
900

1000

100 200 300 400 500 600 700 800 900

N
o.

re
qu

es
ts

Latency (milliseconds)

0 10 20 30 40 50 60 70 80 90 100

[0 - 200 ms]

[2 01 - 400 ms]

[4 00 - 600 ms]

Percentage %

(a) Forward analysis

0
100
200
300
400
500
600
700
800
900

1000

100 200 300 400 500 600 700 800 900

N
o.

re
qu

es
ts

Latency (milliseconds)

100

400

700

1000

100 200 300 400 500 600 700 800 900

N
r.r

eq
ue

st
s

Latency (milliseconds)

100

400

700

1000

100 200 300 400 500 600 700 800 900

N
r.r

eq
ue

st
s

Latency (milliseconds)

(b) Backward analysis

Figure 4: Interaction modalities

the identification of specific performance behaviors that are wor-
thy of investigation. The user can visually identify “modes” in the
response time distribution, which indicate meaningful recurring
performance behaviors, to start a targeted investigation on these
requests, as we will detail in the subsequent subsection.

3.2 Interaction modalities

vamp supports bidirectional analysis, allowing users to initiate their
analysis from either the tree (forward analysis) or the histogram
(backward analysis). In the following, we provide detailed descrip-
tions of both these interaction modalities.

3.2.1 Forward analysis. Fig. 4a depicts an illustrative example of
forward analysis. By examining the tree, the user can identify “sus-
picious” RPC execution paths that exhibit high variability in the

corresponding attribute values. For instance, when analyzing the
execution time attributes, the user can identify RPCs that show
highly varying execution times, and, by clicking on the correspond-
ing node, they can inspect the recurring execution time behaviors
associated with the path, displayed in the form of a bar chart, as
shown in Fig. 4a. Each bar refers to a specific execution time range
(see y-axis labels), and it shows the percentage of requests with RPC
execution time falling in that range. In order to identify meaning-
ful ranges, we employ a widely-used clustering algorithm, namely
K-means [26]. In particular, we run the algorithm on-the-fly after
the user click with 𝑘 ranging from 2 to 5 and we select the results
showing the highest silhouette score [33]. Each bar represents a
meaningful recurring execution time behavior, and the user can
click on each bar to see how this behavior reflects in the end-to-end
response time. This relation is shown by highlighting in red the
area of the distribution that shows this particular RPC execution
time behavior. For instance, in Fig. 4a, we can observe that when the
selected RPC has an execution time ranging between 400 and 600
milliseconds, it can lead to end-to-end response times that range
between 700 and 800 milliseconds. Understanding these kinds of
relationships would have been way more challenging by using cur-
rently available tools. It is worth noticing that the same interaction
modality also applies when analyzing different RPC attributes, such
as occurences.

3.2.2 Backward analysis. In the backward analysis, the user can
start its investigation directly from the histogram component. The
user selects a specific range of end-to-end response time using a
slider selector, as shown in Fig. 4b. This selection triggers an up-
date in the tree component’s color scheme, shifting its semantic
from variability to divergence. In other words, the updated color
scheme will now denote the degree of divergence in the attribute
values of the selected set of requests (i.e., those that show end-to-
end response time in the selected range) when compared to those
in other requests. A red node indicates that the corresponding
RPC execution path shows considerably different attribute values
in the selected requests when compared to other requests, sug-
gesting a possible relationship between the selected end-to-end
response time and the RPC execution path. Conversely, a white
node indicates similar attribute values, and therefore a weak rela-
tion. We quantify the degree of divergence using Kullback-Leibler
divergence [7], where values close to 0 indicate nearly identical
distributions (white), while values close to or higher than 1 indicate
highly different distributions (red).

The user can then delve deeper into each RPC execution time
behavior by clicking on the corresponding node. This action lets
appear at screen two new histograms (in the bottom right corner)
representing the distributions of the execution time in the selected
RPC execution path, respectively in the selected requests (in red)
and in other requests (in grey). In doing so, the user can effectively
analyze how particular ranges of the end-to-end response time
distribution correlate with specific RPC attribute values.

3.3 Dashboard

Fig. 5 outlines the vamp dashboard. As can be observed by the
figure the two main visual components, namely the tree and the
histogram, are positioned in the center-left and in the upper-right

VAMP: Visual Analytics for Microservices Performance SAC ’24, April 8–12, 2024, Avila, Spain

0
100
200
300
400
500
600
700
800
900

1000

100 200 300 400 500 600 700 800 900

N
o.
re
qu

es
ts

Latency
(milliseconds)

A B C D

Figure 5: vamp’s Dashboard

Microservices
system

Trace
Collector Trace

Storage

Preprocessing

Optimized
Trace Storage

Interactive
Analysis

Dashboard

Figure 6: vamp’s Workflow

corners, respectively. The space in the bottom-right is intentionally
left blank and will be used to display supplementary visualization
components during the interaction, e.g., the bar chart (for forward
analysis) and the two histograms (for backward analysis).

It’s worth noting that vamp is specifically designed to assist in
analyzing requests from the same class, i.e., those originating from
the same root RPC. As part of this process, the user is required to
first select the root RPC and the RPC attribute (i.e., execution time
or path frequency) to be investigated, before proceeding with the
actual analysis.

The user can select the root RPC using either a dropdown menu
A or a search text-box B . Similarly, the RPC attribute (execution
time or frequency) to be analyzed can be selected using a dropdown
menu D . Additionally, the dashboard includes a date-time range
selector C , where the user can specify the start and end date-times.
This feature allows for analyses at different time granularities (e.g.,
monthly, weekly, and daily) or over specific time ranges known to
include system anomalies.

To enhance user experience during the interaction with the tool,
vamp supports pinch gestures to enable zoom in and zoom out of
the tree. In addition, it allows the user to hide the RPCs invoked
within a particular execution path by double-clicking on the related
node.

3.4 Architecture and Implementation

Fig. 6 outlines the key architecture components of vamp. The Trace
Collector (i.e., Jaeger [39]) continuously collects traces from the
microservices system and stores them in a Trace Storage (i.e., Elas-
ticsearch [12]). Given the large volume of data collected each day,
we have devised a Preprocessing step to enhance the efficiency of

interaction with vamp. This preprocessing step operates in batches
and is intended to be executed periodically (e.g., hourly or daily). For
each end-to-end request (i.e., trace), vamp recursively reconstructs
all the involved RPC execution paths, along with their attribute
values (namely, execution times and frequencies), and stores them
in an Optimized Trace Storage based on MongoDB. Each path associ-
ated with a request is stored as a separate document in a dedicated
MongoDB collection, and includes: the name of the path, the trace
ID, the number of occurrences of the path in the trace, the observed
execution time, the timestamp, and the name of the root RPC. Simi-
larly, vamp stores the end-to-end response time values, along with
related information, in a separate MongoDB collection. This infor-
mation includes the RPC root, the trace ID, the response time value,
and the timestamp. This data reorganization allows for greater flex-
ibility in easily and efficiently querying the data needed for the
vamp dashboard to function properly. As can be seen from Fig. 6,
the Dashboard app directly queries the Optimized Trace Storage to
efficiently generate visualizations.

vamp currently supports distributed traces stored in the Jaeger
[39] format using Elasticsearch [12] as Trace Storage, but it can be
easily extended to other technologies. The dashboard and visual
components have been developed using D3.js, which handles the
visualization rendering, and Flask, which serves as the backend
service. The preprocessing scripts are implemented in Python.

4 EVALUATION

The conducted evaluation is centered around one main research
question: To what extent does vamp support performance analysis?

We want to understand whether vamp can be successfully utilized
to gain insights about the relationship between request attributes
and end-to-end performance response time.

In the following, we first describe themethodology used to gather
the answer. Then, we report and discuss the results of the exper-
imental evaluation. Finally, we describe the threats to validity of
our study.

4.1 Methodology

To achieve our study goal, we generate 33 datasets of distributed
traces, where each dataset reflects a distinct scenario that induces
a specific variation in the relationships between request attributes
and end-to-end response time. Subsequently, we manually analyze
each dataset using vamp to evaluate the effectiveness of our tool in
highlighting these relationships.

4.1.1 Datasets generation. The 33 datasets are generated from
TrainTicket [47], which, as best as we know at the time of writing, is
the largest and most complex open-source microservice-based sys-
tem. TrainTicket provides a typical train ticket booking web service;
it involves 41 microservices implemented in four programming lan-
guages, and it utilizes Jaeger [39] and Elasticsearch [12] for collect-
ing and storing distributed traces. We have chosen TrainTicket as a
representative case system due to its complexity and because it has
been recently used in software engineering research [23, 41, 46, 47].

Each dataset of our study contains distributed traces related to
one specific root RPC of the system, which are stored on Elastic-
search using the standard Jaeger format.

SAC ’24, April 8–12, 2024, Avila, Spain Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco

To simulate different scenarios that induce different variations in
the relationship between RPC attributes and end-to-end response
time, we rely on two different approaches: (i) we inject synthetic
performance issues in specific RPCs to increase the overall end-to-
end response time, and (ii) we use complex mixtures of varying
workloads that may alter the relationships between RPC execution
time/occurrences and end-to-end response time. These two distinct
approaches lead to the generation of two categories of datasets.

The first category of datasets is generated using a methodology
similar to the one presented in [8, 41]. Initially, the system’s source
code is modified to inject random performance issues. Following
this, load-testing sessions are run to simulate user interactions with
the system and generate distributed traces. Each injected perfor-
mance issue affects approximately 10% of requests, introducing a
delay into one specific RPC.

To generate a dataset, we first select two random RPCs that will
be impacted by the performance issues. Subsequently, we choose
a random delay to increase the end-to-end response time by 𝑥%,
where 𝑥 ∈ {10, 20, 30}. In addition, in half of the datasets, we inject
a random delay of 𝑦% (with 𝑦 ∈ {10, 20, 30}) into an asynchro-
nous RPC, which does not produce any effect on the end-to-end
response time. This is a common practice used to test the robust-
ness of pattern detection approaches in the context of microservices
systems [8, 20, 41]. After modifying the system accordingly, we con-
duct load-testing sessions to generate the distributed trace datasets.
Each load testing session involves 20 synthetic users, simulated by
Locust [18]. Each user makes a request to the system and randomly
waits between 1 and 3 seconds before making the next request. Each
session lasts for 20 minutes. Using this methodology, we generate
20 datasets featuring various combinations of performance issues
that affect different RPCs with different delays. For a more detailed
explanation of this process, we refer readers to the work of Traini
and Cortellessa [41]. Due to space constraints, we do not elaborate
further here.

The second kind of dataset does not involve any performance
issue injection, but it is generated using a more elaborate workload
generator. Similarly to recent studies [24, 25] we use load mixtures
that involve multiple types of simulated users (i.e., load drivers),
where each user type performs different classes of requests on the
system. For example, some types of users may only visit the home-
page and subsequently search trains for some random locations,
while others first login into the system and then book random tick-
ets. Besides this, we also ensure that the number of simulated users
per type keeps changing over time. In this way, workloads will
more closely resemble real-world ones, as they generate mixtures
of different classes of requests that change over time [3]. To this
aim, we slightly modified PPTAM [4], a workload generator that
involves 5 different user types, to continuously change the number
of users of each type at run-time. Overall, the number of simultane-
ous users ranges from a minimum of 20 to a maximum of 31, and
the load-testing session lasts for 1 hour. The workload fluctuations
over time are randomly generated upfront. This process leads to 13
distinct datasets, each one related to a different API.

The generations of the datasets were done on a bare-metal ma-
chine running Linux Ubuntu 18.04.2 LTS on a dual Intel Xeon CPU
E5-2650 v3 at 2.30 GHz, with a total of 40 cores and 80 GB of RAM.
All non-mandatory background processes except SSH are disabled,

and we ensured that no other users interacted with the dedicated
machine during our experiments.

To enhance clarity throughout the rest of the article, we will
use specific notations for different categories of datasets. Datasets
characterized by performance issues (i.e., first category) will be
referred to as 𝐷𝑖 , where 1 ≤ 𝑖 ≤ 20. Conversely, datasets free from
performance issues (i.e., second category) will be denoted as 𝐷𝑖 ,
with 1 ≤ 𝑖 ≤ 13.

4.1.2 Manual analysis. To assess the effectiveness of our approach,
two authors conducted manual inspections of the 33 distributed
trace datasets using vamp. Our evaluation focused on determining
the extent to which vamp facilitated the comprehension of the
relationship between RPC execution time/frequency and end-to-
end response time.

It is worth noting that neither author was aware of the spe-
cific performance issues or the workload variations present in each
dataset. This is because the process for the dataset generation, in-
cluding performance issue injections and load testing modifications,
was entirely random and automated. Nonetheless, both authors
were familiar with the TrainTicket system before the study.

4.2 Results

vamp has proven to be effective in highlighting the relationship be-
tween RPC execution time and end-to-end response time, through-
out all the datasets featuring injected performance issues. The anal-
ysis was straightforward for the majority of the datasets (18 out of
20), demanding minimal interaction with vamp. In these datasets,
both forward and backward analysis demonstrated comparable ef-
fectiveness, with no noticeable difference in the effort needed to
understand these relationships. Due to space constraints, we are
unable to present the exhaustive results of our analyses across
all datasets. However, we have included a selection of representa-
tive examples that underscore both the utility and potential chal-
lenges associated with employing vamp. Additionally, for the sake
of completeness, we have made available screenshots capturing
interactions with vamp across all the datasets in a supplementary
replication package [44].

Fig. 7 showcases an example of forward analysis using the dataset
𝐷2. As depicted in the left screenshot, vamp significantly stream-
lines the identification of the two RPCs impacted by performance is-
sues, i.e., the ones highlighted in bright red. Following this, the user
can select these nodes to investigate correlations between specific
RPC execution times and end-to-end response times. For example,
the screenshot on the right of Fig. 7 reveals that the selected RPC ex-
ecution path (highlighted in green) exhibits two distinct execution
time behaviors: in 9.87% of the requests, the RPC getRouteByTripId

has an execution time ranging from 27.46 to 33.67 milliseconds,
and in the remaining 90.13% of requests, the execution time ranges
from 2.62 to 11.25 milliseconds. This screenshot displays the view
of vamp during the investigation of the first behavior, that is, after
clicking on the corresponding bar (highlighted in red). As evident
from the figure, vamp reveals that all the requests with an execu-
tion time ranging from 27.46 to 33.67 milliseconds in the selected
RPC execution path fall within a specific region of the end-to-end
response time distribution, as shown by the red highlight in the
histogram. Understanding these kinds of relationships would have

VAMP: Visual Analytics for Microservices Performance SAC ’24, April 8–12, 2024, Avila, Spain

Figure 7: Forward analysis on execution time for dataset 𝐷2.

been particularly challenging when using traditional performance
analysis tools.

Fig. 8 offers another example of how vamp allows users to rapidly
identify the RPC responsible for a particular end-to-end response
time deviation. Specifically, this figure demonstrates an instance of
a vamp backward analysis using the dataset 𝐷9. The left screenshot
shows that by selecting a specific range of end-to-end response
times, the user can immediately pinpoint the RPC execution paths
that display significantly divergent behavior in the execution time
(highlighted in bright red). The screenshot on the right displays
the investigation of one of these nodes (i.e., the one highlighted in
green), illustrating how vamp assists users in comprehending the
correlation between specific RPC execution times and the selected
range of end-to-end response times. For instance, it is noticeable
that when the RPC getRouteByTripId has an execution time exceed-
ing 27 milliseconds, it results in an end-to-end response time that
falls within the range of 137 and 168 milliseconds.

Another interesting aspect of vamp is its ability to identify exe-
cution time fluctuations in RPCs that do not have influence on the
end-to-end response time. For instance, Fig. 9 illustrates two distinct
execution time behaviors in the selected RPC calculateSoldTicket:
one ranging between 33.42 and 55.95 milliseconds, and another
between 1.03 and 14.96 milliseconds. Through the use of vamp,
we were able to easily notice the lack of correlation between the
execution time of this RPC and the end-to-end response time. As
illustrated in Figures 9a and 9b, the selected execution time behav-
iors (i.e., the bars highlighted red) are evenly distributed across the
end-to-end response time distribution, implying a lack of notable
correlation with specific regions of the end-to-end response time.
This indicates that even if the RPC execution time varies drastically
from one request to another, it does not have any significant impact
on the end-to-end response time.

In two datasets, specifically 𝐷4 and 𝐷19, the analysis was more
complex, requiring a higher number of interactions with vamp.
The peculiarity of these datasets was that the two performance
issues led to an increased end-to-end response time that overlaps
within the same range. This made the connection between the RPC
execution time and end-to-end response time more challenging to
understand. We did not include the specific details of these cases in

the paper because of limited space, but we refer the reader to our
supplementary materials [44] for the related screenshots.

With regards to the 13 datasets in the second category, we found
that a substantial majority of them - precisely 11 datasets - fea-
ture a unique mode in the end-to-end response time distribution.
Given the objectives of our analysis, these cases were not consid-
ered. Consequently, we used two datasets for our evaluation. The
first dataset, 𝐷1, consists of requests originating from the root RPC
getByCheapest, while the second dataset, 𝐷2, comprises requests
initiated from queryInfo. vamp enabled us to characterize the cor-
relation between the frequency of each RPC execution path and
specific modes of the end-to-end response time. Fig. 10 provides an
example of this characterization, illustrating that each mode of the
end-to-end distribution corresponds to a specific number of invoca-
tions of a selected RPC execution path (highlighted in green). For
example, as depicted in Fig. 10c, the right-most mode is character-
ized by 14 invocations of the path queryInfo → queryForStationId.
Similarly, the center mode is characterized by 6 invocations of this
path, while the left-most mode is marked by 2 invocations. Uncov-
ering such patterns using traditional observability tools would have
been notably challenging.

Summing up, we answer our RQ as follows: vamp proved to be
effective in supporting performance analysis of microservices. In 18
out of the 20 datasets involving performance issues, we were able
to rapidly identify the affected RPCs, their corresponding execution
time behaviors, and their relationship with end-to-end response
time. However, in a few specific cases (2 out of 20 datasets), the anal-
ysis proved to be more challenging, necessitating a greater number
of interactions with vamp. Moreover, our evaluation demonstrates
how vamp can facilitate an understanding of how structural differ-
ences in requests (i.e., varying frequencies of RPC execution paths)
influence end-to-end response time.

4.3 Threats to Validity

4.3.1 Construct validity. We conducted the evaluation in-house
rather than using external participants. Our familiarity with the
tool and the experimental setup could potentially introduce bias
into the evaluation outcomes. To mitigate this threat, we generated
20 diverse scenarios randomly, each involving various combina-
tions of performance issues. Additionally, the two authors who

SAC ’24, April 8–12, 2024, Avila, Spain Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco

Figure 8: Backward analysis on execution time for dataset 𝐷9.

(a)

(b)

Figure 9: Forward analysis on execution time for dataset 𝐷1.

conducted the evaluations were kept uninformed about the RPCs
affected by the performance issues. Using artificial delays as part
of the evaluation may not perfectly mirror real-world performance
issues. However, this methodology aligns with prevailing practices
in software engineering research, as evidenced by several studies
[21, 25, 27, 41]. Furthermore, in contrast to many previous studies
[21, 25, 27], which typically employ a limited set of predetermined

regressions with fixed magnitudes, our approach offers a more com-
prehensive evaluation on 20 diverse scenarios involving different
combinations of RPCs and delay magnitudes

4.3.2 Internal validity. The workloads used in our experimental
setup may not be representative of real-world workloads. To (par-
tially) mitigate this limitation, we perform an additional analysis
using mixtures of continuously changing workloads, generated
through PPTAM [4]. Our evaluation may be subject to confirma-
tion bias, wherein the authors may unconsciously confirm their
pre-existing beliefs on the effectiveness of vamp. Nonetheless, the
results obtained using vamp unambiguously demonstrate its effec-
tiveness across a majority of the datasets evaluated. In the interest
of transparency and to enable readers to independently assess this
evidence, we have made all screenshots documenting the use of
vamp across the datasets in our study publicly available [44].

4.3.3 External validity. We cannot ensure that vamp can achieve
the same effectiveness on other datasets outside our experimental
setup (e.g., real world scenarios). Nevertheless, through an eval-
uation on 33 datasets, we have demonstrated that our approach
effectively aids in the performance analysis of microservices sys-
tems. vamp’s efficiency was evaluated on datasets of varying sizes,
ranging from 11181 to 22348 requests. It’s worth noting that real-
world microservices systems may involve a much larger volume of
requests. As part of our future work, we plan to enhance the scalabil-
ity of vamp by incorporating sampling techniques and optimizing
preprocessing procedures.

5 RELATEDWORK

Previous research on visualization for distributed systems has pri-
marily focused on analyzing individual requests or comparing two
requests. The swimlane visualization, a widely used technique to
represent individual end-to-end executions, was originally pro-
posed by Singelman et al. [37]. Today, most distributed tracing
tools offer this visualization. TraVista [2] enhances the standard
swimlane visualization by augmenting it with information that
assists users in contextualizing the performance of the analyzed
request in relation to others. Beschastnikh et al. [6] introduced

VAMP: Visual Analytics for Microservices Performance SAC ’24, April 8–12, 2024, Avila, Spain

(a)

(b)

(c)

Figure 10: Forward analysis on frequency for dataset 𝐷2.

a novel visualization tool called ShiViz, which includes an inter-
active time-space diagram for visualizing individual end-to-end
executions of a distributed system.

Sambasivan et al. [36] studied and compared three visualiza-
tion approaches (i.e., side-by-side view, difference view, and anima-
tion) for comparing two request-flow traces. Jaeger [39] provides
a feature to visually compare the structural characteristics of two
requests [15].

Several visualizations have also been introduced to analyze the
performance behaviors of multiple end-to-end requests in aggre-
gate. One example is TransVis by Beck et al. [5], which provides

a visualization technique for specifying and analyzing transient
performance behaviors in microservice systems. Other examples of
visual techniques for aggregate performance analysis can be found
in commercial APM tools [1], such as Dynatrace, AppDynamics, or
Instana. For instance, Dynatrace’s Service Flow feature [16] allows
to display aggregate workflows of end-to-end requests along with
their associated characteristics.

To the best of our knowledge, despite the many existing visual-
ization techniques for microservices performance analysis, there
is still a lack of dedicated visualizations to analyze the correlation
between requests’ attributes and their end-to-end performance
behavior, which is the goal of our study.

Other related works include the recent Davidson and Mace’s sur-
vey [9], which underscores the critical role of visualization within
systems research, and the qualitative interview study conducted
by Davidson et al. [10], which highlighted the limitations of cur-
rent distributed tracing tools. Davidson et al.’s findings involved
several open research challenges that span multiple research areas,
including visualization research.

6 CONCLUSION

In this paper, we presented vamp, a novel visual analytics tool for
microservices performance analysis. vamp overcomes the limita-
tions of current distributed tracing tools by providing a wide set of
interactive visualizations that enables effective performance analy-
sis of multiple end-to-end requests. Through an evaluation of 33
datasets generated from an established open-source microservices
system, we demonstrate how vamp can be effectively used to under-
stand the relationship between the RPC attributes and end-to-end
response time. For future work, we plan to enhance the efficiency of
our tool to facilitate its transition to practice. As part of this process,
we intend to validate our future improvements using real-world
distributed traces from large-scale microservices systems, similar
to those shared by Alibaba [27]. To aid reproducibility we provide
the data and source code needed to replicate our findings [44].

ACKNOWLEDGMENTS

This work is partially supported by European Union - NextGenera-
tionEU - National Recovery and Resilience Plan (Piano Nazionale
di Ripresa e Resilienza, PNRR) - Project: “SoBigData.it - Strengthen-
ing the Italian RI for Social Mining and Big Data Analytics” - Prot.
IR0000013 - Avviso n. 3264 del 28/12/2021, and by Territori Aperti
(a project funded by Fondo Territori, Lavoro e Conoscenza CGIL
CISL UIL).

REFERENCES

[1] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and
Weiyi Shang. 2016. Studying the Effectiveness of Application Performance Man-
agement (APM) Tools for Detecting Performance Regressions for Web Applica-
tions: An Experience Report. In Proceedings of the 13th International Conference on
Mining Software Repositories (Austin, Texas) (MSR ’16). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/2901739.2901774

[2] Vaastav Anand, Matheus Stolet, Thomas Davidson, Ivan Beschastnikh, Tamara
Munzner, and Jonathan Mace. 2020. Aggregate-Driven Trace Visualizations for
Performance Debugging. arXiv: 2010.13681 [cs] Number: arXiv:2010.13681.

[3] Dan Ardelean, Amer Diwan, and Chandra Erdman. 2018. Performance Analysis
of Cloud Applications. In Proceedings of the 15th USENIX Conference on Networked

Systems Design and Implementation (NSDI’18). USENIXAssociation, USA, 405–417.
event-place: Renton, WA, USA.

https://doi.org/10.1145/2901739.2901774

SAC ’24, April 8–12, 2024, Avila, Spain Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco

[4] Alberto Avritzer, Daniel Menasché, Vilc Rufino, Barbara Russo, Andrea Janes,
Vincenzo Ferme, André van Hoorn, and Henning Schulz. 2019. PPTAM: Produc-
tion and Performance Testing Based Application Monitoring. In Companion of the

2019 ACM/SPEC International Conference on Performance Engineering (Mumbai,
India) (ICPE ’19). Association for Computing Machinery, New York, NY, USA,
39–40. https://doi.org/10.1145/3302541.3311961

[5] Samuel Beck, Sebastian Frank, Alireza Hakamian, Leonel Merino, and André van
Hoorn. 2021. TransVis: Using visualizations and chatbots for supporting tran-
sient behavior in microservice systems. In 2021 Working Conference on Software

Visualization (VISSOFT). IEEE, 65–75.
[6] Ivan Beschastnikh, Perry Liu, Albert Xing, PattyWang, Yuriy Brun, andMichael D.

Ernst. 2020. Visualizing Distributed System Executions. ACM Trans. Softw. Eng.

Methodol. 29, 2 (March 2020). https://doi.org/10.1145/3375633 Place: New York,
NY, USA Publisher: Association for Computing Machinery.

[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press. https://doi.org/10.1017/CBO9780511804441

[8] Vittorio Cortellessa and Luca Traini. 2020. Detecting Latency Degradation Pat-
terns in Service-Based Systems. In Proceedings of the ACM/SPEC International

Conference on Performance Engineering (ICPE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 161–172. https://doi.org/10.1145/3358960.3379126

[9] Thomas Davidson and Jonathan Mace. 2022. See it to believe it? The role of
visualisation in systems research. In Proceedings of the 13th Symposium on Cloud

Computing (SoCC ’22). Association for Computing Machinery, New York, NY,
USA, 419–428. https://doi.org/10.1145/3542929.3563488

[10] Thomas Davidson, Emily Wall, and Jonathan Mace. 2023. A Qualitative Interview
Study of Distributed Tracing Visualisation: A Characterisation of Challenges and
Opportunities. IEEE Transactions on Visualization and Computer Graphics (2023),
1–12. https://doi.org/10.1109/TVCG.2023.3241596

[11] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM

56 (2013), 74–80. http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-
scale/fulltext

[12] Elastic. 2023. Elasticsearch: The Official Distributed Search & Analytics Engine.
https://www.elastic.co/elasticsearch/ "Accessed 2023-01-15 18:38".

[13] Elastic. 2023. Kibana: Explore, Visualize, Discover Data. https://www.elastic.co/
kibana "Accessed 2023-01-15 17:38".

[14] Brian Everitt. 1998. The Cambridge Dictionary of Statistics. Cambridge University
Press, Cambridge, UK.

[15] Joe Farro. 2018. Trace comparisons arrive in Jaeger 1.7. https://medium.com/
jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d "Accessed
2023-01-15 18:16".

[16] Dynatrace Inc. 2023. Dynatrace. Service Flow. https://www.dynatrace.com/
platform/service-flow/ "Accessed 2023-02-14 14:10:59".

[17] Zhen Ming Jiang and Ahmed E. Hassan. 2015. A Survey on Load Testing of
Large-Scale Software Systems. IEEE Transactions on Software Engineering 41, 11
(2015), 1091–1118. https://doi.org/10.1109/TSE.2015.2445340

[18] Heyman Jonatan, Carl Byström, Joakim Hamrén, and Hugo Heyman. 2023. An
open source load testing tool. https://locust.io "Accessed 2023-06-10 13:38".

[19] Jonathan Kaldor, Jonathan Mace, Micha\l Bejda, Edison Gao, Wiktor Kuropatwa,
Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An
End-to-End Performance Tracing And Analysis System. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP ’17). Association for Computing
Machinery, New York, NY, USA, 34–50. https://doi.org/10.1145/3132747.3132749

[20] Darja Krushevskaja and Mark Sandler. 2013. Understanding Latency Variations
of Black Box Services. In Proceedings of the 22nd International Conference onWorld

Wide Web (Rio de Janeiro, Brazil) (WWW ’13). Association for Computing Ma-
chinery, New York, NY, USA, 703–714. https://doi.org/10.1145/2488388.2488450

[21] Christoph Laaber and Philipp Leitner. 2018. An Evaluation of Open-Source
Software Microbenchmark Suites for Continuous Performance Assessment. In
Proceedings of the 15th International Conference on Mining Software Repositories

(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New
York, NY, USA, 119–130. https://doi.org/10.1145/3196398.3196407

[22] Jessica Leone and Luca Traini. 2023. Enhancing Trace Visualizations for Mi-
croservices Performance Analysis. In Companion of the 2023 ACM/SPEC Inter-

national Conference on Performance Engineering (Coimbra, Portugal) (ICPE ’23

Companion). Association for ComputingMachinery, New York, NY, USA, 283–287.
https://doi.org/10.1145/3578245.3584729

[23] Bowen Li, Xin Peng, Qilin Xiang, HanzhangWang, Tao Xie, Jun Sun, and Xuanzhe
Liu. 2021. Enjoy your observability: an industrial survey of microservice tracing
and analysis. Empirical Software Engineering 27, 1 (2021), 25. https://doi.org/10.
1007/s10664-021-10063-9

[24] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Jianmei Guo, Catalin
Sporea, Andrei Toma, and Sarah Sajedi. 2020. Using Black-Box Performance
Models to Detect Performance Regressions under Varying Workloads: An Em-
pirical Study. Empirical Softw. Engg. 25, 5 (sep 2020), 4130–4160. https:
//doi.org/10.1007/s10664-020-09866-z

[25] Lizhi Liao, Jinfu Chen, Heng Li, Yi Zeng, Weiyi Shang, Catalin Sporea, Andrei
Toma, and Sarah Sajedi. 2021. Locating Performance Regression Root Causes

in the Field Operations of Web-based Systems: An Experience Report. IEEE

Transactions on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.
2021.3131529

[26] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-

tion Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489
[27] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,

Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice De-
pendency and Performance: Alibaba Trace Analysis. In Proceedings of the ACM

Symposium on Cloud Computing. 412–426.
[28] Jonathan Mace. 2017. End-to-End Tracing: Adoption and Use Cases. Survey. Brown

University. https://cs.brown.edu/people/jcmace/papers/mace2017survey.pdf
[29] C. Majors, L. Fong-Jones, and G. Miranda. 2022. Observability Engineering: Achiev-

ing Production Excellence. O’Reilly Media, Incorporated. https://books.google.it/
books?id=MbmLzgEACAAJ

[30] Sam Newman. 2015. Building Microservices (1st ed.). O’Reilly Media, Inc.
[31] Charlene O’Hanlon. 2006. A Conversation with Werner Vogels. Queue 4, 4 (May

2006), 14:14–14:22. https://doi.org/10.1145/1142055.1142065 Place: New York,
NY, USA Publisher: ACM.

[32] Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and Rebecca
Isaacs. 2020. Distributed Tracing in Practice: Instrumenting, Analyzing, and De-

bugging Microservices. O’Reilly Media, Incorporated.
[33] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation

and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
https://doi.org/10.1016/0377-0427(87)90125-7

[34] Julia Rubin and Martin Rinard. 2016. The Challenges of Staying Together While
Moving Fast: An Exploratory Study. In Proceedings of the 38th International Con-

ference on Software Engineering (ICSE ’16). Association for Computing Machinery,
New York, NY, USA, 982–993. https://doi.org/10.1145/2884781.2884871

[35] Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman, Rodrigo
Fonseca, and Gregory R. Ganger. 2016. Principled Workflow-centric Tracing of
Distributed Systems. In Proceedings of the Seventh ACM Symposium on Cloud

Computing (SoCC ’16). ACM, New York, NY, USA, 401–414. https://doi.org/10.
1145/2987550.2987568

[36] R. R. Sambasivan, I. Shafer, M. L. Mazurek, and G. R. Ganger. 2013. Visualizing
Request-Flow Comparison to Aid Performance Diagnosis in Distributed Systems.
IEEE Transactions on Visualization and Computer Graphics 19, 12 (2013), 2466–
2475. https://doi.org/10.1109/TVCG.2013.233

[37] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google.

[38] Cindy Sridharan. 2017. Testing Microservices, the sane way.
https://copyconstruct.medium.com/testing-microservices-the-sane-way-
9bb31d158c16 "Accessed 2023-01-16 11:14".

[39] Uber Technologies. 2023. Jaeger: Open source, end-to-end distributed tracing.
https://www.jaegertracing.io/ "Accessed 2023-01-15 14:10:59".

[40] Luca Traini. 2022. Exploring Performance Assurance Practices and Challenges
in Agile Software Development: An Ethnographic Study. Empirical Software

Engineering 27, 3 (2022), 74. https://doi.org/10.1007/s10664-021-10069-3 ISBN:
1573-7616.

[41] Luca Traini and Vittorio Cortellessa. 2023. DeLag: Using Multi-Objective
Optimization to Enhance the Detection of Latency Degradation Patterns in
Service-Based Systems. IEEE Transactions on Software Engineering (2023), 1–28.
https://doi.org/10.1109/TSE.2023.3266041

[42] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele Tucci. 2022.
Towards effective assessment of steady state performance in Java software: are
we there yet? Empirical Software Engineering 28, 1 (2022), 13. https://doi.org/10.
1007/s10664-022-10247-x

[43] Luca Traini, Daniele Di Pompeo, Michele Tucci, Bin Lin, Simone Scalabrino,
Gabriele Bavota, Michele Lanza, Rocco Oliveto, and Vittorio Cortellessa. 2021.
How Software Refactoring Impacts Execution Time. ACM Trans. Softw. Eng.

Methodol. 31, 2, Article 25 (dec 2021), 23 pages. https://doi.org/10.1145/3485136
[44] Luca Traini, Jessica Leone, Giovanni Stilo, and Antinisca Di Marco. 2023. VAMP -

Replication Package. https://github.com/lucatraini/VAMP.
[45] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia Mar-

gulis, Scott Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri Perelman,
and Yee Jiun Song. 2016. Kraken: Leveraging Live Traffic Tests to Identify and
Resolve Resource Utilization Bottlenecks in Large Scale Web Services. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 635–651.

[46] Chenxi Zhang, Xin Peng, Chaofeng Sha, Ke Zhang, Zhenqing Fu, Xiya Wu,
Qingwei Lin, and Dongmei Zhang. 2022. DeepTraLog: Trace-Log Combined
Microservice Anomaly Detection through Graph-based Deep Learning. In 2022

IEEE/ACM 44th International Conference on Software Engineering (ICSE). 623–634.
https://doi.org/10.1145/3510003.3510180

[47] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2021.
Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Bench-
mark System, and Empirical Study. IEEE Transactions on Software Engineering 47,
2 (2021), 243–260. https://doi.org/10.1109/TSE.2018.2887384

https://doi.org/10.1145/3302541.3311961
https://doi.org/10.1145/3375633
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/3358960.3379126
https://doi.org/10.1145/3542929.3563488
https://doi.org/10.1109/TVCG.2023.3241596
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
https://www.elastic.co/kibana
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d
https://medium.com/jaegertracing/trace-comparisons-arrive-in-jaeger-1-7-a97ad5e2d05d
https://www.dynatrace.com/platform/service-flow/
https://www.dynatrace.com/platform/service-flow/
https://doi.org/10.1109/TSE.2015.2445340
https://locust.io
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/2488388.2488450
https://doi.org/10.1145/3196398.3196407
https://doi.org/10.1145/3578245.3584729
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-020-09866-z
https://doi.org/10.1007/s10664-020-09866-z
https://doi.org/10.1109/TSE.2021.3131529
https://doi.org/10.1109/TSE.2021.3131529
https://doi.org/10.1109/TIT.1982.1056489
https://cs.brown.edu/people/jcmace/papers/mace2017survey.pdf
https://books.google.it/books?id=MbmLzgEACAAJ
https://books.google.it/books?id=MbmLzgEACAAJ
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1145/2884781.2884871
https://doi.org/10.1145/2987550.2987568
https://doi.org/10.1145/2987550.2987568
https://doi.org/10.1109/TVCG.2013.233
https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16
https://copyconstruct.medium.com/testing-microservices-the-sane-way-9bb31d158c16
https://www.jaegertracing.io/
https://doi.org/10.1007/s10664-021-10069-3
https://doi.org/10.1109/TSE.2023.3266041
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.1145/3485136
https://github.com/lucatraini/VAMP
https://doi.org/10.1145/3510003.3510180
https://doi.org/10.1109/TSE.2018.2887384

	Abstract
	1 Introduction
	2 Motivation
	3 vamp
	3.1 Visual Components
	3.2 Interaction modalities
	3.3 Dashboard
	3.4 Architecture and Implementation

	4 Evaluation
	4.1 Methodology
	4.2 Results
	4.3 Threats to Validity

	5 Related work
	6 Conclusion
	Acknowledgments
	References

