
Technical Report of MANILA: A Framework to

Democratize the Quality-Based Machine Learning

Development Through Extended Feature Models

Giordano d’Aloisio∗, Antinisca Di Marco, Giovanni Stilo

aDepartment of Information Engineering and Information Sciences and Mathematics,
University of L’Aquila, Via Vetoio, L’Aquila, 67100, Italy

Abstract

Machine learning (ML) systems have become an essential tool for experts of
many domains, data scientists, and researchers, helping them to find answers
to many complex business questions starting from raw datasets. Neverthe-
less, the development of ML systems able to satisfy the stakeholders’ needs
requires an appropriate amount of knowledge about the ML domain. Over
the years, several solutions have been proposed to automate the develop-
ment of ML systems. However, an approach taking into account the new
quality concerns needed by ML systems (like fairness, effectiveness, privacy,
and others) is still missing.

We target the fairness and expressiveness quality attributes by proposing
MANILA, a novel low-code application to support the development of fair
and effective ML systems. The main idea behind the proposed approach is
that we can think of the quality-based development process of ML systems as
a Software Product Line (SPL) implemented through the Extended Feature
Model formalism. In this work, we extend our previous publication [1] by
evaluating MANILA’s expressiveness and correctness by replicating three
different real-world fairness evaluations and showing how the results of the
experiments implemented with MANILA are statistically equal to the original
ones. In addition, we conduct a user evaluation of our approach to highlight
and discuss its strengths and main points of improvement for its usability.

∗Corresponding author
Email addresses: giordano.daloisio@graduate.univaq.it (Giordano d’Aloisio),

antinisca.dimarco@univaq.it (Antinisca Di Marco), giovanni.stilo@univaq.it
(Giovanni Stilo)

Keywords: Machine Learning System, Fairness, Low-code development,
Software Product Line

1. Introduction

Machine Learning (ML) systems are increasingly becoming used instru-
ments, applied to all application domains, and affect our real life. The de-
velopment of ML systems requires a high knowledge of the underlying ML
approaches to choose the best techniques, models, and measures to solve
the target problem. In recent years, many methods have been developed to
automate some phases of ML system development and help non-technical
users (e.g., [2, 3, 4]). However, these techniques do not consider the quality
properties essential for ML systems, like the privacy of the data set or the
interpretability, explainability and fairness of the model [5, 6, 7].

Indeed, if we consider the impact that ML applications have on our
lives, it is clear how ensuring that these quality properties are satisfied is of
paramount importance. This importance is also highlighted by some of the
17 Sustainable Development Goals (SDG) proposed by the United Nations
[8], in primis SDG 5 (Gender Equality) or SDG 10 (Reduced Inequalities).
In addition, the relevance of these quality properties is also highlighted by
the AI Act proposal of the European Commission, where effectiveness (i.e.,
how good an ML model is in predicting outcomes [9]), and fairness (i.e., the
absence of any prejudice or favouritism toward an individual or group based
on their inherent or acquired characteristics [10]) are described as key quality
properties for high-risk AI-enabled systems [11].

In this paper, we target these two quality properties (i.e., effectiveness and
fairness) by presenting MANILA (Model bAsed developmeNt of machIne
Learning systems with quAlity), a novel approach that will democratise the
quality-based development of ML systems by means of a low-code platform
[12]. The goal of our approach is to provide an environment for the automatic
configuration and implementation of experiments that automatically selects
the ML system (i.e., the ML Algorithm and the fairness enhancing method)
to better satisfy a given quality requirement. The requirement is satisfied
by finding the best trade-off between effectiveness and fairness. This will
simplify the work of data scientists who are not practical in the quality-
based development of ML systems, and will guarantee fairness by reducing
inequalities in contexts where applying ML systems is ethically critical (e.g.,
justice [13] or education [14]).

2

Note that this paper extends our previous publication [1] by adding the
following new contributions:

• We extend the discussion of related works by including new papers em-
ploying a software engineering approach to model fairness experiments;

• We extensively evaluate MANILA in terms of both expressiveness and
correctness ;

• We conduct a user evaluation of MANILA to highlight its strengths
and limitations, and to identify its main points of improvement for its
usability.

The rest of this paper is structured as follows: Section 2 presents a list
of related works distinguishing among motivating papers and related ap-
proaches; Section 3 presents a general quality evaluation workflow that we
use as a reference in the rest of the paper; in Section 4 we describe the
architecture of MANILA and its components; Section 5 is devoted to de-
scribing the correctness and expressiveness evaluation and the user evalua-
tion of MANILA; Section 6 discusses some possible threats to validity of our
approach, and, finally Section 7 concludes the paper also presenting some
future works.

2. Related Work

In this section, we describe related work related of our proposed approach.
We first describe a list of papers that motivate the need for quality assurance
in ML systems, and we describe how our approach aims to solve some of the
underlying concerns. Next, we describe a set of works similar to our proposed
approach, highlighting for each one the differences with MANILA.

2.1. Motivating Papers

The problem of quality assurance in machine learning systems has gained
much relevance in the last years. Many articles highlight the need to define
and formalise new standard quality attributes for machine learning systems
[5, 6, 7, 15, 16, 17]. Most of the work in the literature focuses on either the
identification of the most relevant quality attributes for ML systems or on
the formalisation of them in the context of ML system development.

Concerning the identification of quality attributes in ML systems, the au-
thors of [18, 19] identify three main components in which quality attributes

3

can be found: Training Data, ML Models and ML Platforms. The
quality of Training Data is generally evaluated with properties such as pri-
vacy, bias, completeness and missing values, expressiveness. ForML Model,
the authors mean the trained model used by the system. The quality of this
component is generally evaluated by fairness, explainability, interpretability,
security. Finally, ML Platform is the implementation of the system, which
is mainly affected by security, performance reliability, and availability. Muc-
cini et al.[5] identified a set of quality properties as constraints of stakeholders
and highlighted the need to consider them during the Architecture Definition
phase. The quality attributes are: data quality, ethics, privacy, fairness, ML
models’ performance, etc. Martinez-Fernàndez et al. also highlights in [6] the
need to formalise quality properties in ML systems and update the software
quality requirements defined by ISO 25000 [20]. The most relevant properties
highlighted by the authors concern ML safety, ML ethics, and ML explain-
ability. In our work, we focus on quality properties that arise during the
development of ML systems such as fairness, explainability, interpretability,
and datasets privacy, while we leave other quality properties (e.g., perfor-
mance) that arise during other phases (e.g., deployment) for future work. In
particular, in this paper we target fairness, also in relation to expressiveness.

Many solutions have been proposed to formalise and model the standard
quality assurance process in ML systems. Amershi et al. have been the
first authors to identify a set of common steps that identify the develop-
ment of each ML system [21]. In particular, each ML system is identified
by nine stages that go from data collection and cleaning, to model training
and evaluation, and finally to the deployment and monitoring of the ML
model. Their work has been the foundation of many subsequent papers on
the quality modelling of ML systems. CRISP ML (Cross-Industry Standard
Process model for Machine Learning) is a process model proposed by Studer
et al. [22], extending the more well known CRISP DL [23] process model
to ML systems. They identify a set of common phases for the building of
ML systems, namely: Business and Data understanding, Data preparation,
Modelling, Evaluation, Deployment, Monitoring and Maintenance. For each
phase, the authors identify a set of functional quality properties to ensure
the quality of such systems like robustness (i.e., the ability of an ML model
to guarantee a constant level of correctness in the predictions during time),
explainability, and computational complexity. Similarly, the Quality for Arti-
ficial Inteligence (Q4AI) consortium proposed a set of guidelines [24] for the
quality assurance of ML systems for specific domains: generative systems,

4

operational data in process systems, voice user interface system, autonomous
driving and AI Optical Character Recognition. For each domain, the au-
thors identify a set of properties and metrics to ensure quality properties like
robustness, and explainability. Concerning the modelling of quality require-
ments, Azimi et al. proposed a layered model for the quality assurance of
machine learning systems in the context of the Internet of Things (IoT) [25].
The model consists of two layers: Source Data and ML Function/Model. For
Source Data, a set of quality attributes is defined: completeness, consistency,
conformity, accuracy, integrity, timeliness. Machine learning models are in-
stead classified into predictors, estimators and adapters and a set of quality
attributes are defined for each of them: accuracy, correctness, completeness,
effectiveness, optimality. Each system is then influenced by a subset of qual-
ity characteristics based on the type of ML model and the required data.
Ishikawa proposed, instead, a framework for the quality evaluation of an ML
system [26]. The framework defines these components for ML applications:
dataset, algorithm, ML component and system, and, for each of them, pro-
poses an argumentation approach to assess quality. Finally, Siebert et al.
[27] proposed a formal modelling definition for quality requirements in ML
systems. They start from the definition of the process in [23] and build a
metamodel for the description of quality requirements. The meta-model is
made of the following classes: Entity (which can be defined at various levels
of abstraction, such as the whole system or a specific component of the sys-
tem), Property (also expressed at different levels of abstraction), Evaluation
and Measure related to the property. Starting from this meta-model, the au-
thors build a tree model to evaluate the quality of the different components
of the system. From this analysis, we can conclude that there is a robust
research motivation in formalising and defining new quality attributes of the
ML systems.

From this review, we can conclude how many attempts have been pro-
posed to address quality constraints of ML systems, and several quality prop-
erties, metrics, and definitions of ML systems can now be extracted from the
literature. However, a framework that guides the data scientist through de-
veloping ML systems satisfying quality properties is actually still missing. In
this paper, we go in this direction by proposing MANILA, a novel approach
that will democratise the quality-based development of ML systems through
a low-code platform. In particular, we model a general workflow for the
quality-based development of ML systems as a Software Product Line (SPL)
[28] through the ExtFM formalism [29, 30]. Next, we demonstrate how it

5

is possible to generate an actual implementation of such workflow from a
low-code experiment configuration and how this workflow is actually able to
suggest the best methods to satisfy a given quality requirement. Recalling
the ML development process of [21], MANILA focuses on the model training
and model evaluation development steps by guiding the data scientist in se-
lecting the ML system (i.e., ML algorithm and quality improvement method)
that better meets a given quality attribute. In particular, in this paper, we
focus on the fairness quality attribute, while other attributes will be explored
in future works.

2.2. Related Approaches

Several approaches have been proposed in the last few years regarding
either the adoption of Feature Models to model ML systems or helping users
in the quality-based development of ML systems.

Regarding the adoption of Feature Models to model ML systems, a similar
approach was used by Di Sipio et al. in [31]. In their work, the authors
used feature models to model ML pipelines for Recommender Systems. The
variation points are identified by all the components needed to implement a
recommender system (e.g., the ML algorithm to use or the Python libraries
for the implementation). However, they do not consider quality attributes in
their approach.

In terms of helping users assess quality attributes in ML systems, there
is an intense research activity mainly related to the fairness domain [32].
In general, the problem of fairness assurance can be defined as a search-
based problem among different ML algorithms and fairness methods [32]. An
example of a search-based approach to identify the best combination of the
ML classifier and the fairness enhancing method is the Fairkit-learn library
proposed by Johnson and Brun in [33]. In their work, the authors present
a Python library (similar to the well-known scikit-learn library [34]) that
uses a grid-search approach to identify the best combination of the fairness
enhancing method and ML classifier, along with the best configuration of
hyper-parameters for the given classifier and fairness enhancing methods.
In our work, we adopt a similar grid search-based approach to select the
best combination of the ML classifier and the fairness method. However,
instead of a library that may be difficult to use for non-technical users [35],
we propose a low-code application to guide non-expert users in the quality-
based development of ML systems. In addition, MANILA guides in the

6

definition and generation of experiments that are always executable (i.e., not
leading to errors).

Instead, a tool that is close to our approach is the model-driven bias as-
sessment and mitigation framework proposed by Yohannis and Kolovos in
[36]. In particular, the authors have first defined a meta-model to represent
bias measurement and mitigation scripts. Then, they defined a Domain Spe-
cific Language (DSL) to specify such scripts. Finally, from a script model de-
fined using such a DSL, the proposed tool automatically generates a Python
implementation of the script. The authors have also presented two decision
trees that guide users in selecting, respectively, the most accurate fairness
metrics and methods based on the purpose of the experiment. MANILA
differs from this approach in three aspects: (i) our approach relies on the
Extended Feature Model formalism to model the quality-based ML devel-
opment process as an SPL; (ii) MANILA is designed to be easily extended
to include other quality attributes and find the best trade-off among them;
(iii) MANILA guides users in selecting features (i.e., ML algorithms and
fairness-enhancing methods) that always lead to an executable experiment
script (i.e., that does not lead to execution errors). However, we will also
include the purpose-orientated feature selection approach of [36] in our fu-
ture works. In this way, MANILA will guide users in selecting features that
are both compliant with already selected ones and also compliant with the
purpose of their experiments.

3. Considered Quality Evaluation Process

Consider now a data scientist who needs to understand which is the best
ML system able to satisfy a given quality constraint. What they typically
will do is perform a quality evaluation ad-hoc process to assess the set of
ML and quality enhancing techniques able to satisfy the quality constraint
better. They assume that the best possible quality result can be achieved by
applying one of the available techniques in isolation.

Algorithm 1 reports the pseudo-code of a generic process to assess a
generic QA during the development of an ML system.

The first step is selecting the dataset to use and possibly preparing it
for the experiment (in this work, we assume that the dataset has already
been preprocessed and is ready to train the ML model). Next, the data
scientist selects the ML algorithms, the methods enhancing a QA, and the
appropriate quality metrics for the evaluation. Then, for each of the chosen

7

Algorithm 1: Quality Evaluation Process pseudo-code

Input: Dataset d, ML Algorithms ML, QA Methods Q, QA Metric
M

for m ∈ ML do
for q ∈ Q do

if q works on d then
apply q on d;

if q works on m before training then
apply q on m;

f = train m;
if q works on f then

apply q on f ;

compute selected metrics M on f ;

choose report technique;
evaluate the results;
Q = select best QA Method;
M = select best ML Algorithm;
F = train M with full dataset applying Q;
return F

ML algorithms, they apply the selected quality methods and, according to
their type, there can be the following options:

• if the quality method works on the training set, it has to be applied to
the dataset before training the ML algorithm

• if the quality method works on the ML algorithm before training, then
it has to be applied to the ML algorithm before the training phase

• if the method works on the trained ML algorithm, then it has to be
applied after the training of the ML algorithm

Finally, the data scientist computes the selected metrics for the specific pair
of ML and QA methods. After repeating the process for all the selected
methods, they choose a reporting technique (e.g., table or chart), evaluate
the obtained results collected in the report, and train with the entire dataset
the ML algorithm performing better by applying the quality method that

8

better achieves the QA. If the data scientist has a threshold to achieve, then
they can verify if at least one of the ML and quality methods combinations
satisfies the constraint. If so, one of the suitable pairs is selected. Otherwise,
they have to relax the threshold and repeat the process.

Data
Scientist

Features selection

Select
dataset

Select
ML Methods

Select
Fair Methods

Select
Metrics

Test the
methods

Evaluate the
results Yes

No

Results
are satisfying?

Train and
return the
best ML
setting

Experiment Execution

Figure 1: Manual execution of the Quality Evaluation Process

The Quality Evaluation Process described in Algorithm 1 can be general-
ized as a process of common steps describing any experiment in the considered
domain with the same assumptions. Figure 1 sketches such a generalization.
First, the data scientist selects all the experiment features, i.e., the dataset,
the ML Methods, the methods assuring a specific QA and the related met-
rics (Features Selection step). Next, she runs the quality methods using the
general approach described in algorithm 1 and evaluates the results (namely,
Experiment Execution). If the results are satisfying (i.e., they satisfy the
quality constraints), then the method with the best QA is returned. Other-
wise, the data scientist has to repeat the process, possibly relaxing the QA
constraints or working on the dataset.

The described Quality Evaluation Process is the foundation of MANILA
that aims to formalise and democratise it by providing an SPL and ExtFM-
based low-code framework that supports data scientists in developing quality
ML systems.

4. MANILA Approach

In this section, we describe the new web-based version of MANILA, a low-
code framework to formalise the quality-based development of ML systems.
This work is based on the general experiment workflow described in Section
3, and on the results of the user evaluation described in Section 5.2.

9

Our approach aims to automate and ease the quality-based development
of ML systems. We achieve this goal by proposing a framework to automat-
ically generate a configuration of an experiment to find the ML system (i.e.,
ML algorithm and quality enhancing method) better satisfying a given QA.
This framework will accelerate the quality-based development of ML systems
making it accessible also to not experts.

Recalling the experimental workflow described in section 3, the set of ML
models, quality methods and metrics can be considered variation points of
each experiment, differentiating them from one another. For this reason, we
can think of this family of experiments as a Software Product Line (SPL)
specified by a Feature Model [37]. Indeed, Feature Models allow us to define
a template for families of software products with standard features (i.e., com-
ponents of the final system) and a set of variability points that differentiate
the final systems [29, 38]. Features in the model follow a tree-like parent-child
relationship and could bemandatory or optional [38]. Sibling features can be-
long to an Or-relationship or an Alternative-relationship [38]. Finally, there
could be Cross-tree relationships among features not in the same branch.
These relationships are expressed using logical propositions [38]. However,
traditional Feature Models do not allow associating attributes to features,
which are necessary in our case to represent a proper experiment workflow
(for instance, to specify the label of the dataset or the number of rounds in
cross-validation [39]). Hence, we relied on the concept of Extended Feature
Models [29, 30] to represent the family of experiments workflows.

Figure 2 details a high-level picture of MANILA, where each rounded box
represents a step in the quality-driven development process, while square
boxes represent artefacts. MANILA has been implemented as a low-code
web application through which all the steps of the quality-based development
workflow can be performed. Near each artefact, we report the tools involved
in its implementation.

The first step in the development process is the feature selection, in which
the data scientist selects all the components of the quality-testing experi-
ment through a dedicated web form. Next, a Python script implementing
the experiment is automatically generated from the selected features. The
generated experiment can be executed directly in the web application, or
it can be downloaded and executed locally or embedded in other pipelines.
After its execution, for each QA selected, the experiment returns:

1. a quality report reporting for each quality method and ML algorithm

10

MANILA

 Experiment
 Script

Experiment
execution

Output

Best ML
Setting

Quality
ReportMANILA

Extended Feature Model

Feature
selection

 MANILA Web Application

Experiment
execution

Experiment
generation

Figure 2: MANILA approach

the related metrics;

2. the ML algorithm with the applied quality enhancing method that
better performs with the given QA, trained and ready for production.

The architecture of MANILA makes it easy to extend. In fact, adding a new
method or metric to MANILA translates to adding a new feature to the web
form and adding the proper code implementing it.

The basis of MANILA is the Extended Feature Model (ExtFM). The
ExtFM is the template of all possible experiments a data scientist can per-
form and guides her through the quality-based development of an ML system.
We used the ExtFM as a formalism to reason about the different relation-
ships and constraints among features before implementing them in the web
application.

MANILA is publicly available in the SoBigData research infrastructure
(RI) [40] (after registration)1, and its source code is available on GitHub2.
SoBigData is a European project that aims to develop and share analyses
and tools in the field of Big Data following the Open Science principle. Its
RI is built on top of the D4Science platform [41] and provides datasets,
analyses, and methods on several data science topics. In this perspective,

1https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq
2https://github.com/giordanoDaloisio/manila-web

11

https://sobigdata.d4science.org/group/sobigdata.it/manila-univaq
https://github.com/giordanoDaloisio/manila-web

MANILA is provided as an application to assist data scientists in performing
fairness evaluations using the datasets already available in the platform or
by uploading new ones.

In the following, we detail first the ExtFM; then, we describe the web
application and how each workflow step has been implemented.

4.1. Extended Feature Model

As already mentioned, the ExtFM is the basis of MANILA approach since
it defines the template of all possible experiments a data scientist can gen-
erate. It has been implemented using FeatureIDE, an open-source graphical
editor which allows the definition of ExtFMs [42].

Figure 3 shows a short version of the implemented ExtFM3. In particular,
each experiment is defined by six macro features, which are then detailed by
children’s features.

The first mandatory feature is the Dataset. The Dataset has a file ex-
tension (e.g., CSV, EXCEL, JSON, and others), and a Label which can be
Binary or Multi-Class. The Label feature has two attributes specifying his
name and the positive value (used to compute fairness metrics). The Dataset
could also have one or more sensitive variables that identify sensitive groups
subject to unfairness [10]. The sensitive variables have a set of attributes to
specify their name and the privileged and unprivileged groups [10]. Finally,
there is a feature to specify if the Dataset has only positive attributes. This
feature has been included to define a cross-tree constraint with a scaler tech-
nique that requires only positive attributes (see table 1). All these features
are modelled as abstract since they do not have a concrete implementation
in the final experiment. The next feature is a Scaler algorithm, which is not
mandatory and can be included in the experiment to scale and normalize the
data before training the ML model [43]. Different scaler algorithms from the
scikit-learn library [34] are listed as concrete children of this feature. Next,
there is the macro-feature representing the ML Task to perform. This feature
has not been modelled as mandatory since there are two fairness methods (i.e.
Gerry Fair and Meta Fair [44, 45]) that embed a fair classification algorithm
and so, if they are selected, the ML Task can not be specified. However, we
included a cross-tree constraint requiring the selection of ML Task if any of
these two methods are selected (¬ Gerry Fair ∧ ¬ Meta Fair ⇒ ML Task).

3The whole picture can be downloaded here https://bit.ly/3ZyvMrk

12

https://bit.ly/3ZyvMrk

Figure 3: Short version of the implemented Extended Feature Model

13

An ML Task could be Supervised or Unsupervised. A Supervised task could
be a Classification task or a Regression task and has an attribute to specify
the size of the training set. These two abstract features are then detailed by
a set of concrete implementations of ML methods selected from the scikit-
learn library [34]. The Unsupervised learning task could be a Clustering or
an Aggregation task. At this stage of the work, these two features have not
been detailed and will be explored in future works. Next is the macro feature
representing the system’s Quality Attributes. This feature is detailed by the
four quality attributes elicited in our previous paper [1]. Effectiveness is not
included in these features since it is an implicit quality of the ML methods
and does not require adding other components (i.e. algorithms) in the ex-
periment. At the time of this paper, the Fairness quality has been detailed,
while the other properties will be deepened in future works. In particular,
Fairness methods can be Pre-Processing (i.e. strategies that try to mitigate
the bias on the dataset used to train the ML model [10, 46, 47]), In-Processing
(i.e. methods that modify the behaviour of the ML model to improve fair-
ness [10, 48]), and Post-Processing (i.e. methods that re-calibrate an already
trained ML model to remove bias [10, 49]). These three features are detailed
by several concrete features representing fairness-enhancing methods. In se-
lecting such algorithms, we selected methods with a solid implementation,
i.e., algorithms integrated into libraries such as AIF360 [50] or Fairlearn [51]
or algorithms with a stable source code such as DEMV [52] or Blackbox [49].
All these quality features have been implemented with an Or-group relation-
ship. The last macro feature represents the Metrics to use in the experiment.
Metrics are divided among Classification Metrics, Regression Metrics and
Fairness Metrics. Each metric category has a set of concrete metrics selected
from the scikit-learn library [34] and the AIF360 library [50]. Based on the
ML Task and the Quality Attributes selected, the data scientist must select
the proper metrics to assess Correctness and the other Quality Attributes.
This constraint is formalized by cross-tree relationships among features (see
table 1). In addition, a set of Aggregation Functions must be selected if more
than one metric is selected. The aggregation function combines the value of
the other metrics to give an overall view of the method’s behaviour. Forward,
there is the optional macro feature identifying the Validation function. Val-
idation functions are different strategies to evaluate the Quality Attributes
of an ML model [53]. Several Validation functions are available as children
features, and there is an attribute to specify the number of groups in case of
cross-validation [53].

14

Table 1: Extended Feature Model cross-tree constraints

Cross-tree constraints Description
Fairness ⇒ Sensitive Variables If the fairness QA is selected, then the

sensitive variables must be specified
Fairness ⇒ Fairness Metrics If the fairness QA is selected, then at

least a fairness metric must be selected
Multiple Sensitive Var ⇒ ¬ Sampling ∧
¬ Blackbox ∧ ¬ DIR

If multiple sensitive variables are
selected, then disable the fairness

enhancing methods not supporting more
than one sensitive variable

MultiClass ⇒ ¬ Reweighing ∧ ¬ DIR ∧
¬ Optimized Preprocessing ∧ ¬ LFR ∧
¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧
¬ Meta Fair ∧ ¬ Prejudice Remover ∧
¬ Calibrated EO ∧ ¬ Reject Option

If a multi-class label is selected, then
disable the fairness methods not

supporting multi-class classification

Regression ⇒ ¬ PostProcessing ∧
¬ Reweighing ∧ ¬ DIR ∧ ¬ DEMV ∧
¬ Optimized Preprocessing ∧ ¬ LFR ∧
¬ Adversarial Debiasing ∧ ¬ Gerry Fair ∧
¬ Meta Fair ∧ ¬ Prejudice Remover

If the regression task is selected, then
disable all the fairness methods not

supporting this task

Exponentiated Gradient ∨ Grid Search ⇒
¬ MLP Classifier ∧¬ MLP Regressor

Exponentiated Gradient and Grid Search
fairness methods do no work with MLP

Classifier and MLP Regressor ML
methods

¬ GerryFair ∧¬ MetaFair ⇒ ML Task If not GerryFair and MetaFair fairness
methods are selected, then an ML Task

must be selected
Classification ⇐⇒ Classification Metrics
∧¬ Regression Metrics

If the classification ML task is selected,
then at least one classification and no

regression metrics must be selected, and
vice versa

Classification Metrics ⇐⇒ ¬ Regression
Metrics

If a classification metric is selected, then
a regression metric must not be selected

and vice versa
Regression ⇐⇒ Regression Metrics ∧¬
Classification Metrics

If the regression ML task is selected, then
at least one regression and no

classification metrics must be selected,
and vice versa

Box-Cox Method ⇒ Strictly Positive At-
tributes

If the Box-Cox scaler method is selected,
then the dataset must have strictly

positive attributes

15

Finally, table 1 lists the cross-tree constraints among features. These
constraints have been then implemented in the web form of MANILA to
guide the data scientist in selecting features always leading to a correct (i.e.,
executable) experiment.

4.2. Web Application

The features and the constraints defined in the ExtFM have been im-
plemented into a low-code web application which is the core of MANILA.
Through the web application, is it possible to perform all the steps of the
quality-based development workflow described in Section 3. The web appli-
cation has been implemented using the React framework for the front end
and the Flask Python library for the back end. In the following, we detail
how each workflow step has been implemented in the application.

4.2.1. Feature Selection

The feature selection step has been implemented in MANILA through a
web form that includes all the features and the constraints defined in the
ExtFM.

Figure 4: MANILA Web Form

Figure 4 shows a portion of the web form. The form comprises six sub-
forms (one for each macro feature defined in the ExtFM). Each sub-form

16

includes all the concrete (i.e., non-abstract) children features of the relative
macro feature in the ExtFM. For instance, in figure 4 is shown the sub-
form relative to the Dataset macro feature, and it includes all the Dataset
children features like File Extension, Label, and so on. Children with an
alternative relationship in the ExtFM are implemented in the form either
through a radio group (like the File Extension or Label fields in figure 4) or by
a logical condition among fields (for instance, in figure 4 theMultiple Sensitive
Variables field has been disabled because the Single Sensitive Variable field
has been selected). In all other cases, features in the ExtFM have been
implemented as checkbox fields in the form. Additional attributes related
to the features (like the Label Name or Positive Value fields) have been
implemented as text fields, which may be mandatory or not, depending on
the case.

The cross-tree constraints defined in the ExtFM have been implemented
as logical constraints among the different form fields. Figure 5 shows an ex-
ample of such constraints. In the figure, it can be seen how the Regression
field has been disabled. This is due to two reasons: first, the Classifica-
tion ML task has already been selected, and second, the Regression task is
incompatible with the fairness methods included so far. Hence, since the
Fairness quality property has been selected, regression ML methods can not
be selected; otherwise, they would lead to a non-executable experiment. This
constraint is also shown to the user through a message saying that Regres-
sion task is incompatible with fairness methods. In addition, note how the
Reweighing fairness method has been disabled as well. This is because the
Reweighing method is not compatible with the MLP Classifier ML method
that has already been selected. This constraint is also reported to the user
through a message saying that Reweighing is not compatible with MLP Clas-
sifier or MLP Regressor.

Concerning the selection of fairness metrics, we included a set of questions
(inspired from [36]) to help the data scientist select the proper ones. Figure
6 reports the set of questions. The first question aims at identifying if the
fairness definition to assess is an individual (i.e., similar individuals should be
treated similarly) or group (i.e., individuals of a specific group should not be
discriminated) fairness definition [10]. If the data scientist selects individual,
then the three individual fairness metrics implemented in the aif360 library
(i.e., Euclidean Distance[54], Manhattan Distance[55] and Mahalanobis Dis-
tance[56]) are shown. Instead, if the data scientist chooses the group fairness
definition, another question aims to identify the specific category of group

17

Figure 5: Example of web form cross-tree constraints

fairness definitions. In particular, the data scientist has to specify if she is
interested in equal fairness (i.e., everyone should have the same probability
of receiving the positive label predicted [10]), proportional fairness (i.e., ev-
eryone should have the positive label predicted only if the other variables,

18

Figure 6: Fairness metric selection

different from the sensitive ones, tell that [10]), or other fairness definitions.
Based on the selected definition, then a set of metrics is shown. In particular,
following the work of [36], for the equal category, we have included Statisti-
cal Parity and Disparate Impact fairness metrics [57]. For the proportional
category, we have included the Equalized Odds Difference [58] and Average
Odds Difference [59]. Finally, for the other category, we included the True
Positive Difference and False Positive Difference [60].

Figure 7: File upload field and execution buttons

19

Finally, figure 7 shows a last field in the form that allows the user to
upload their dataset to run the generated experiment on the server. Below
are two buttons allowing respectively to download the generated code and
run the experiment on the server. Note how in the figure, the buttons are
disabled because not all the constraints defined in the form are met.

4.2.2. Experiment Generation and Execution

The experiment can be generated and executed after selecting a set of
features that meet all the form’s constraints.

The generation process starts by either clicking on the Generate Code or
Run the experiment buttons shown in figure 7. The first button starts the
code generation process and makes the generated code available for download.
In contrast, the second generates the code and executes the generated code
directly on the server showing the output to the user. The code generation
process is performed through the Jinja template engine [61].

In general, the experiment applies each ML algorithm with each fairness
method. It returns a report with the selected metrics and the ML setting
(i.e., ML method and fairness enhancing method), achieving the best fairness
and effectiveness trade-off. As already reported, it is worth noticing how
the effectiveness is an intrinsic property of the ML algorithms and so no
enhancing method is required. Figure 8 reports an example of how the quality

Quality evaluation experiment

Best
Setting

ML Model 2

Effectiveness/Fairness
Report

Settings Metric 1 ... Metric J

Setting
1,1 ---

...

Setting
3,n

...Method
1

Fairness

Method
n

ML Model 1

ML Model 3

Figure 8: Quality evaluation process example

evaluation process is done in MANILA. In this example, the data scientist
has selected three ML algorithms and wants to assure Fairness. She has
chosen n methods to enhance Fairness and has selected j metrics for Fairness
and effectiveness. Then, the testing process applies the n fairness methods
to each ML algorithm and computes the j fairness metrics. Finally, the

20

process returns a report synthesizing the obtained results for Fairness and
Effectiveness along with the best Fairness and Effectiveness setting.

1 from utils import cross_val

2 from methods import FairnessMethods

3 ...

4

5 ml_methods = {

6 ’logreg ’: LogisticRegression (),

7 ’gradient ’: GradientBoostingClassifier (),

8 }

9 fairness_methods = {

10 ’no_method ’: FairnessMethods.NO_ONE ,

11 ’preprocessing ’: [

12 FairnessMethods.DEMV ,

13],

14 ’inprocessing ’: [

15 FairnessMethods.EG,

16 FairnessMethods.GRID ,

17],

18 ’postprocessing ’: []

19 }

20 base_metrics = {

21 ’stat_par ’: [],

22 ’eq_odds ’: [],

23 ’zero_one_loss ’: [],

24 ’disp_imp ’: [],

25 ’acc’: [],

26 ’hmean’: [],

27 }

28 for m in ml_methods.keys():

29 model = Pipeline ([

30 (’scaler ’, StandardScaler ()),

31 (’classifier ’, ml_methods[m])

32])

33 for f in fairness_methods.keys():

34 model = deepcopy(model)

35 data = data.copy()

36 if f == ’preprocessing ’:

37 for method in fairness_methods[f]:

38 model_fair , ris_metrics = cross_val (..., model=model ,

metrics=base_metrics , preprocessor=method)

39 ...

40 elif f == ’inprocessing ’:

41 for method in fairness_methods[f]:

42 model_fair , ris_metrics = cross_val (..., model=model ,

metrics=base_metrics , inprocessor=method)

43 ...

44 elif f == ’postprocessing ’:

45 for method in fairness_methods[f]:

46 model_fair , ris_metrics = cross_val (..., model=model ,

metrics=base_metrics , postprocessor=method)

47 ...

Listing 1: Portion of the generated experiment code

21

To have a more concrete visualization of how the experimental evaluation is
conducted, Listing 1 reports a small portion of the generated Python code. In
the code, there are three dictionaries containing the list of ML methods, fair-
ness methods, and metrics to use (namely ml methods, fairness methods,
and base metrics, respectively). Next, there is a for loop exploring the
list of ML methods and, for each method, the function creates a pipeline in-
cluding a preprocessing method (in this example, the StandardScaler pre-
processing approach). Finally, a nested for loop explores the list of fairness
methods, and, for each of them, a function performing the evaluation is called
according to the fact that the fairness method is a preprocessing, inprocess-
ing, or postprocessing one. It is worth noting how the depicted generated
experiment may vary based on the features selected. However, most sections
of the experiment are general and are not related to the selected features.

If the data scientist chooses to download the code, the generated ex-
periment can be invoked directly through the Python interpreter using the
command given in listing 2. Otherwise, it can be called through a REST API
or any other interface such as a desktop application or a Scientific Workflow
Management System like KNIME [62, 63]. This generality of our experimen-
tal workflow makes it very flexible and suitable for many use cases.

$ python main.py -d <DATASET PATH >

Listing 2: Experiment invocation

After the execution, the code returns the quality report in CSV format and
the best ML model trained with the full input dataset and ready to be
deployed. The ML model returned by the experiment is saved as a pickle
file [64]. We have chosen this format since it is a standard format to store
serialized objects in Python and can be easily imported into other scripts.

Instead, if the data scientist executes the experiment on the server, the
results are shown on a dedicated page. Figure 9 shows the different elements
of the results page. In this particular example, we used MANILA to evalu-
ate the fairness and effectiveness of a Logistic Regression model alone and a
Logistic Regression model with the application of the Reweighing preprocess-
ing method[46]. We used the Accuracy metric to evaluate the effectiveness
and the Average Odds [58] and Disparate Impact [47] metrics to evaluate the
fairness of the two settings. Finally, we adopted the Statistical Mean as the
aggregation function. The result page shows the metrics both in a bar chart
and in a tabular way. Figure 9a shows the bar chart along with two but-
tons to download the fully trained best ML model in pickle format and the

22

(a) Metrics bar chart

(b) Raw results

(c) Metrics description

Figure 9: MANILA result page

23

computed metrics as a CSV file, respectively. From the bar chart, it can be
seen how the Logistic Regression plus Reweighing combination (the blue bar
in figure 9a) performs better because it achieves a higher value of Disparate
Impact (the closer this metric is to one, the more fair is the model) and a
higher value of Statistical Mean. The same results are shown in a tabular
format as displayed in figure 9b. In this case, the best combination is high-
lighted in green in the table. Finally, figure 9c shows a short description of
how to read and interpret the different metrics.

5. MANILA Empirical Evaluation

In this section, we describe the evaluation we performed on MANILA. To
this aim, we formulate the following research questions (RQ):

RQ1 Can MANILA effectively assist in conducting real-world fairness eval-
uations?

RQ2 To what extent the results returned by MANILA are in line with base-
lines?

RQ3 How much is MANILA perceived as useful and usable?

RQ4 What are the main points of improvement of MANILA for its usability?

To tackle RQ1 and RQ2, we evaluate MANILA both in terms of expres-
siveness (RQ1) and correctness (RQ2) by reproducing a set of real-world
fairness evaluations taken from the literature. In particular, the expressive-
ness is assessed by proving that MANILA is actually able to replicate the
selected fairness evaluations. In contrast, correctness is assessed by showing
that the results obtained with the experiments generated by MANILA are
comparable to the original ones.

To answer RQ3 and RQ4, we conduct a user evaluation of MANILA by
involving students in Computer Science and Applied Data Science master’s
degrees. The user evaluation is performed as a controlled experiment where
we asked the participants to perform a simple two-step experiment focused on
assessing the fairness and effectiveness of different ML and fairness method
combinations. The first step required to make the experiment using Python
while the second using MANILA. After the experiment, we asked the par-
ticipants to answer a questionnaire. The answers to this survey highlighted

24

both the strengths and issues of our tool. The issues will be considered in
the future to develop a new improved release of MANILA.

In Section 5.1 we depict the expressiveness and correctness evaluation
performed to answer the RQ1 and RQ2. Then we describe and discuss the
user evaluation conducted to answer RQ3 and RQ4 in Section 5.2.

5.1. Expressiveness and Correctness Evaluation of MANILA

To answer RQ1 and RQ2, we replicate with MANILA the experimental
evaluation performed on our previous paper [52]. In that paper, we eval-
uated the fairness and effectiveness of several ML settings using different
datasets. In this evaluation, we replicate three specific experiments (i.e.,

Table 2: Replicated experiments

Experiment ML Settings Datasets Metrics

1

LogReg
LogReg + EG
LogReg + Grid
LogReg + DEMV

CMC
Crime
Drug
Law
Park
Wine

SP
EO
DI
ZO Loss
Acc
H-Mean

2

Gradient
Gradient + EG
Gradient + Grid
Gradient + DEMV

CMC
Law

SP
EO
DI
ZO Loss
Acc
H-Mean

3

SVM
SVM + EG
SVM + Grid
SVM + DEMV

CMC
Law

SP
EO
DI
ZO Loss
Acc
H-Mean

the ones shown in Tables 16, 18 and 19 of [52]), which are synthesized in
table 2. We have chosen to replicate these experiments among all the ones
conducted in [52] because they provide the highest combination of ML meth-
ods, fairness methods and metrics. In particular, the first replicated experi-
ment is the evaluation of four different ML settings (i.e.,, Logistic Regression

25

(LogReg) alone, Logistic Regression plus Exponentiated Gradient (EG)[48],
Logistic Regression plus Grid Search (GRID)[48], and Logistic Regression
plus DEMV [52]) on six different datasets (i.e.,, Contraceptive Method Choice
(CMC) [65], Communities and Crime (Crime) [66], Drug Usage (Drug) [67],
Law School Admission (Law) [14], Parkinson Telemonitoring (Park) [68], and
Wine Quality (Wine) [69]).

The other two replicated experiments involve the same fairness methods
as the first one but employ two different ML classifiers (i.e.,, Gradient Boost-
ing (Gradient) and Support Vector Machines (SVM), respectively). In this
case, the evaluations are applied only to the CMC and Law datasets. In all
experiments, we consider two sensitive variables for each dataset. The met-
rics involved are: Statistical Parity (SP)[57], Equalized Odds (EO)[58], Zero
One Loss (ZO Loss)[70], Disparate Impact (DI)[47], Accuracy (Acc)[65], and
Harmonic Mean (H-Mean)[71] as aggregation function.

In particular, the expressiveness is evaluated by assessing if MANILA is
able to reproduce the described experiments correctly. The correctness is
instead evaluated by assessing if the results of the experiments generated by
MANILA are close to the ones reported in [52]. In particular, the results of
the generated experiments should be within the standard deviation range of
the results reported in [52], and there should not be a statistically significant
difference between the results.

5.1.1. Expressiveness Evaluation

Concerning the expressiveness of MANILA, we were able to correctly
reproduce all the experiments reported in table 24. In particular, following
the steps described in Sections ?? and ??, we first created 10 configuration
files (one for each experiment and dataset) from the graphical interface of
MANILA. Next, we generated the corresponding implementation code by
invoking the generator module. Finally, we ran the experiments to obtain
the results. Being a low-code platform, MANILA does not require to write
any line of code to implement the given experiments. In contrast, the original
experiments required almost 200 lines of code, as seen in the repository linked
in the original paper5.

4The full replication package of the experiment is available at the following link https:

//bit.ly/3ZR7f0O
5The original code of the reproduced experiment is available here https://bit.ly/

3t1WGvo

26

https://bit.ly/3ZR7f0O
https://bit.ly/3ZR7f0O
https://bit.ly/3t1WGvo
https://bit.ly/3t1WGvo

Answer to RQ1: MANILA presents a high level of expressiveness that
allows it to implement real-world fairness evaluations involving real-world
datasets and to replicate previous experiments.

5.1.2. Correctness Evaluation

Concerning the correctness of the generated experiments, table 3 reports,
for each metric of each experiment, the p-values of the ANOVA statistical
test performed between the results of the original experiments and the ones
obtained by executing the code generated by MANILA. The ANOVA test is a
statistical test to verify if the values of two groups are statistically different.
In particular, if the p-value < 0.05, then it means that the values of the
groups are statistically different, otherwise their difference can be considered
not statistically significant [72].

Table 3: p-values of the ANOVA tests for each experiment

SP EO ZO Loss DI Acc H-Mean
Exp 1 0.913527 0.192048 0.399797 0.528007 0.267832 0.925962
Exp 2 0.712197 0.620129 0.94997 0.804867 0.364792 0.710014
Exp 3 0.918328 0.524131 0.084226 0.90656 0.882236 0.929372

Concerning our evaluation, it can be seen from the results in table 3 that
all the p-values are > 0.05, meaning that all the metrics obtained by run-
ning the code generated by MANILA are not statistically different from the
original ones. In addition, figure 10 reports a comparison of the aggregated
h-means of the three experiments6. As can be noticed, on average, the results
of the three experiments generated by MANILA are very close to the original
ones and are within the standard deviation range.

Answer to RQ2: The correctness of the code generated by MANILA
allows to correctly replicate baseline fairness evaluations by obtaining re-
sults that are statistically equal to the original ones.

5.2. User Evaluation of MANILA

For the user evaluation of MANILA, we followed the guidelines of Rune-
son et al. [73]. The purpose of the evaluation was to assess the usefulness,

6We visualize only the h-mean because, being an aggregated value, it can be considered
as a synthesis of the other selected metrics

27

Experiment 1 Experiment 2 Experiment 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
-M

ea
n Approach

MANILA
original

Figure 10: Aggregated H-Means of the original experiments and MANILA’s ones

usability and point of improvement of MANILA.
In the following, we first report on the process considered to execute the

user evaluation, and then we discuss the obtained results.

5.2.1. User Evaluation Description

The evaluation involved 15 students of Computer Science and Applied
Data Science master’s degrees in a half-day laboratory. First, we introduced
the students to the topic of Bias and Fairness in ML and presented the
main architecture of MANILA. Next, we asked them to perform a short
fairness evaluation experiment. The experiment consisted in evaluating the
fairness and effectiveness of three different ML settings (namely, Logistic Re-
gression alone, Logistic Regression plus Reweighing fairness method[46], and
Logistic Regression plus DEMV fairness method[52]) on the Adult Income
dataset[74]. The metrics used to evaluate the settings were Disparate Im-
pact [47], Accuracy [75] and, as aggregation function, Harmonic Mean[71].

First, the students had to perform the experiment in Python through a

28

Google Colab notebook7. The notebook was pre-filled with some instructions,
and they had to complete the missing code. They had 50 minutes to complete
this task. Next, the students had to perform the same experiment, but
this time using MANILA. In particular, we provided the students with a
document describing all the steps to set up MANILA locally and perform
the given evaluation8. Like the previous task, the students had 50 minutes
to perform it. Finally, the students were asked to fill a survey. The survey
was structured into three main sections:

• General information: this section contains general information about
the involved evaluator like age, gender, degree, area of expertise (i.e.,
Software Engineering, Data Analytics, Machine Learning and AI, or
Software Development), level of knowledge of ML, level of knowledge
of the classification task in ML, and level of knowledge of Python. The
answers to these questions have been used to characterise the popula-
tion;

• Usefulness: this section aims at assessing the level of usefulness of
MANILA and includes questions about the level of knowledge of the
Bias and Fairness topic in ML, the level of relevance of the Bias and
Fairness problem for the student, the extent to which the student has
completed the evaluation in Python, the extent to which the student
has completed the evaluation in MANILA, the number of errors (in
average) the student had during the evaluation in Python, and the
number of errors (in average) the student had during the evaluation in
MANILA;

• Usability: this section aims at assessing the level of usability of MANILA
and includes questions about the level of easiness of the evaluation in
Python, the level of easiness of the evaluation in MANILA, and a final
question about which evaluation was overall the easiest. This section
contains also two open questions on how to improve the overall usabil-
ity and the result’s presentation in MANILA. The first set of questions
are used to assess the usability of MANILA, while the last two open
questions are used to discuss the improvements of MANILA.

7The notebook is available here: https://bit.ly/3QXqiUT
8The document is available here: https://bit.ly/3QSeLGg

29

https://bit.ly/3QXqiUT
https://bit.ly/3QSeLGg

5.2.2. Evaluation Results

In the following, we present the results of our user evaluation, discussing
each section of the survey9 and answering the RQ3 and RQ4. We organize
such discussion into parts presenting the population characterisation, use-
fulness and usability of MANILA (used to answer the RQ 3), and possible
improvements suggested by the respondents (used to answer RQ4).

Population characterisation. As already mentioned in Section 5.2.1, the pop-
ulation of our study was composed of first and second-year computer science
master’s degree students. We chose this sample because we wanted to evalu-
ate MANILA from the perspective of people already familiar with the basic
concepts of ML and data science but not fully experts in the field of fairness.

Software Engineering

53.3%

Machine Learning and AI

20.0%

Software Development

13.3%
Data Analytics

13.3%

Figure 11: Area of expertise

As shown in figure 11, 53.3% of the population specify Software Engi-
neering as their main area of expertise. At the same time, 20.0% declare
Machine Learning and AI as their main area of expertise. At the same time,
as reported in figure 12, only 6.67% of the population specified a high level
of knowledge of ML, while 53.3% has a medium-high knowledge of ML and
AI. The exact distribution of responses of figure 12 also holds for the ques-
tion about the level of knowledge of the classification task in ML. Finally,
as reported in figure 13, 46.6% of the population reported a medium-high
knowledge of Python, while 26.67% reported a high level of expertise. Fi-
nally, as shown in figure 14a, although most of the respondents reported a

9The full results are available here https://bit.ly/46p8juL

30

https://bit.ly/46p8juL

medium-high level of knowledge of ML learning (figure 12), 66.6% of the
population have low knowledge of the problem of Bias and Fairness in ML.

Figure 12: How well do you know ML

Figure 13: How well do you know Python

Conclusions: The considered sample of evaluators is quite diverse and well
fits the user profiles we aim to target with MANILA, which can be expert
data scientists and programmers, but also not experts of fairness.

Usefulness. Concerning the usefulness of MANILA, although, as reported
in figure 14a, most of the population didn’t know about the problem of
bias and fairness in ML before the survey (with 66.6% of the people having
low knowledge of the topic), the respondents believe that this problem is
relevant, with 59.9% of the people giving a medium-high relevance to this
topic as reported in figure 14b. Hence, addressing this topic has been seen
as relevant by the respondents.

31

(a) How do you know the problem of Bias and Fairness in ML?

59.9%

(b) How relevant do you think the problem of Bias and Fairness in Machine Learning is?

Figure 14: Importance of Bias and Fairness

Figure 15 reports the comparison between the level of completion of the
evaluation conducted in Python (figure 15a) and in the assessment conducted
in MANILA (figure 15b). It is interesting to note how 46.7% of the population
has completed at least sections 1 and 2 of the fairness evaluation in MANILA
against 33.3% in case of Python. In addition, we note how 6.7% of the
population has fully completed the evaluation in MANILA (as shown in
figure 15b) while no one has completed the evaluation in Python (as shown
in figure 15a). Finally, we also note how a higher portion of the population
has not started the evaluation in MANILA (26.7% against 20% as reported
in figures 15b and 15a, respectively), probably due to setup difficulties (as
discussed later).

Figure 16 reports the comparison between the average number of execu-
tion errors obtained in the two evaluations. First of all, we note how the
percentage of people in figure 16a reporting that have not completed section

32

Only Section 1

46.7%

Sections 1 and 2

33.3%

Not started

20.0%

Python

(a) To what extent have you completed
the fairness evaluation in Python in
the given time?

Sections 1 and 2

46.7%

Not started

26.7%

Only Section 1

20.0%

Completed
6.7%

MANILA

(b) To what extent have you completed
the fairness evaluation in MANILA
in the given time?

Figure 15: Completion comparison

Less than 5

60.0%

Less than 10

26.7%

Section 1
not completed

13.3%

Python

(a) How many execution errors (in aver-
age) did you have during the fairness
evaluation in Python?

Less than 5

66.7%

Section 1
not completed

26.7%

Less than 10
6.7%

MANILA

(b) How many execution errors (in aver-
age) did you have during the fairness
evaluation in MANILA?

Figure 16: Errors comparison

1 of the experiment is different from the percentage of people in figure 15a
reporting that have not started the experiment. This difference is explained
by the fact that some people have started section 1 of the experiment but
then got errors and have not completed it (as can be seen in the full list of
responses). Instead, people who started the evaluation in MANILA have at

33

least completed section 1 of the evaluation (since the percentage of people
reporting in figure 16b that have not started section 1 is the same percentage
of people reporting in figure 15b that has not begun the evaluation). More-
over, we notice how MANILA leads to fewer execution errors than Python,
with 66.7% having less than five errors and 6.7% reporting less than ten er-
rors in MANILA, compared to 60% of people having less than five errors and
26.7% having less than ten errors in Python as shown in figures 16b and 16a,
respectively.
Conclusions: From these responses, we can conclude how the respondents
see a tool like MANILA as useful because it addresses a relevant topic. In
addition, we note how 53.4% of the respondents completed at least sections
1 and 2 of the evaluation in MANILA, in contrast with the 33.3% in Python.
Moreover, we also notice how MANILA leads to fewer execution errors than
writing the experiment in Python. These results highlight how MANILA is
a valuable tool to perform fairness evaluations.

Usability. Concerning usability, figure 17 reports the comparison between the
easiness of the two evaluations. As can be seen, on average, the evaluation
in MANILA is seen as easier than the evaluation in Python, with half of
the population reporting a level of easiness medium-high for MANILA as
reported in figure 17b. In contrast, half of the people said that the fairness
evaluation in Python was medium-hard, as reported in figure 17a.

Finally, figure 18 reports how 60% of the respondents reported MANILA
as the most accessible evaluation.
Conclusions: We can conclude that MANILA has been seen as a better
solution for making fairness evaluations with respect to writing the evaluation
in Python since it has been seen both as useful and usable.

Answer to RQ3: MANILA has been seen, by a sample of evaluators with
a medium-high knowledge of ML but no knowledge of fairness, as a useful
and usable tool to perform fairness evaluations. In fact, it addresses a
relevant topic and, compared to writing the fairness evaluation in Python,
it is easier to use and leads to fewer execution errors.

Improvements. Quote 1 shows the most meaningful responses to open ques-
tions that help us draw conclusions on how to improve MANILA.

From them, we can derive two main issues:

1. There are too many packages and libraries to download (answers 2, 4,
and 5);

34

20.1%

(a) How easy was the fairness evaluation in Python?

60.1%

(b) How easy was the fairness evaluation in MANILA?

Figure 17: Easiness comparison

MANILA

60.0%

PYTHON

40.0%

Figure 18: Which evaluation was overall the easiest?

35

1. Automatize the installation of the execution of the flow avoiding
typing all the Python and conda creation stuff

2. Less dependencies

3. Faster installation; begin installation before

4. If the file was given instead of creating it

5. The extraction of the files, they are too heavy

Quote 1: Excerpt of the answers on how to improve MANILA

2. The overall setup process is too complex to perform (answers 1 and 3).

Following these answers, we believe that a web-based implementation of
MANILA should overcome the highlighted limitations. In fact, differently
from a desktop tool, a web application will completely remove all the down-
load and setup processes and will also be a better solution in terms of perfor-
mance since all the computational resources required to run the evaluation
experiments will be moved to the server hosting the web app.

Answer to RQ4 The respondents found difficult to manage all the depen-
dencies and to overall setup MANILA. A web version of the tool should
overcome these issues by removing all the download and setup steps and
by moving all the computational resources required to run the experiments
to the server.

6. Threats to Validity

This section discusses possible threats that can hamper the results of the
performed evaluation.

Internal validity concerns factors that can influence the results of our eval-
uation. First, there could be other weaknesses in MANILA not highlighted
by our user evaluation. In this respect, we argue that most of the participants
described all the same shortcomings highlighted in this work (i.e., the diffi-
culty in the download and installation of MANILA), meaning that this was
an actual limitation of our approach. In any case, we are planning to conduct

36

a more extensive user evaluation after addressing the highlighted shortcom-
ings of MANILA to find, and in case, improve other limitations. Secondly,
although we referred to the most adopted fairness library (i.e., AIF360) for
selecting the fairness methods and metrics to include in the tool, there could
be other methods or metrics currently not included in MANILA. However,
we have shown how MANILA has a level of expressiveness able to model
different real-world use cases. In addition, MANILA can be easily extended
to include other methods or metrics by adding a new entry in the feature
model and its actual implementation in the code generation template.

External validity threats concern the generalizability of our approach. In
this respect, there could be some real-world use cases that can not be imple-
mented in MANILA. In particular, at this stage of work, we are not consid-
ering individual fairness definitions, but only group fairness definitions [10].
However, we have re-implemented a large set of use cases involving different
ML methods, fairness methods, metrics and datasets to show how MANILA
is able to manage different group fairness use cases, and, in our future works,
we will extend MANILA to include also individual fairness definitions. Fi-
nally, the general quality evaluation workflow described in Section 3 has been
derived from our previous experience in the quality-based development of ML
Systems, but may not hold for all possible quality attributes. However, we
have shown how this workflow is general enough to model fairness evaluation
experiments as SPL and can be easily extended to cover additional quality
attributes.

7. Conclusion and Future Work

In this paper, we have presented a novel low-code application, MANILA,
to perform fairness and effectiveness evaluations. First, we have performed
an extensive review of the literature presenting both papers that motivated
our work and papers proposing related approaches. Concerning the latter,
we have also highlighted the main differences between other approaches and
ours. Next, we have presented a general workflow for the quality-based de-
velopment of ML systems. Following the general workflow, we presented the
architecture of MANILA describing its main components. We first presented
the Extended Feature Model (ExtFM), which is the formalism at the basis of
the tool. Then, we presented the code generation module and we described
how the experimental evaluation is performed. Next, we presented a user
evaluation of MANILA, conducted to highlight its main points of improve-

37

ment. From the evaluation, we have seen how the installation and set-up
process of MANILA is too complex for the users. By developing a web-based
version of MANILA, we should overcome these limitations. Finally, we per-
formed an evaluation of the expressiveness and correctness of MANILA, by
re-implementing a set of real-world fairness evaluations taken from the liter-
ature.

In future, we first plan to implement MANILA as a low-code web applica-
tion, to overcome the highlighted limitations. Following, we plan to perform
a user evaluation of the web-based version of MANILA by also involving data
scientists working in industries, and researchers studying ML development
and quality assessment (i.e., expert users). Next, we plan to extend MANILA
by including metrics and methods related to individual fairness definitions
and to other relevant quality attributes (e.g., explainability or privacy) and
by implementing in the framework a trade-off analysis that combines the dif-
ferent quality attribute evaluations when required by means of Pareto-front
functions. Finally, since MANILA supports the configuration of an experi-
ment by running all possible combinations of the selected features, a limit of
the proposed approach can be its complexity and the time needed to obtain
the results. Such limitation is mitigated by the feature selection step, which
demands the user to choose which features to include in the experiment. As
future work, to enlarge the usage of MANILA, we will better study such
aspects and provide guidelines to the users on how to mitigate such potential
limitations.

Acknowledgements

This work is partially supported by the European Union - NextGenera-
tionEU - National Recovery and Resilience Plan (Piano Nazionale di Ripresa
e Resilienza, PNRR) - Project: “SoBigData.it - Strengthening the Italian RI
for Social Mining and Big Data Analytics” - Prot. IR0000013 - Avviso n.
3264 del 28/12/2021

References

[1] G. d’Aloisio, A. Di Marco, G. Stilo, Democratizing quality-based ma-
chine learning development through extended feature models, in: Inter-
national Conference on Fundamental Approaches to Software Engineer-
ing, Springer Nature Switzerland Cham, 2023, pp. 88–110.

38

[2] M. Rönkkö, J. Heikkinen, V. Kotovirta, V. Chandrasekar, Au-
tomated preprocessing of environmental data, Future Genera-
tion Computer Systems 45 (2015) 13–24. URL: https://www.

sciencedirect.com/science/article/pii/S0167739X14002040.
doi:https://doi.org/10.1016/j.future.2014.10.011.

[3] P. M. Goncalves Jr., R. S. M. Barros, Automating data preprocess-
ing with dmpml and kddml, in: 2011 10th IEEE/ACIS International
Conference on Computer and Information Science, 2011, pp. 97–103.
doi:10.1109/ICIS.2011.23.

[4] X. He, K. Zhao, X. Chu, Automl: A survey of the state-of-the-art,
Knowledge-Based Systems 212 (2021) 106622. URL: https://www.

sciencedirect.com/science/article/pii/S0950705120307516.
doi:https://doi.org/10.1016/j.knosys.2020.106622.

[5] H. Muccini, K. Vaidhyanathan, Software Architecture for ML-based
Systems: What Exists and What Lies Ahead, in: 2021 IEEE/ACM 1st
Workshop on AI Engineering - Software Engineering for AI (WAIN),
2021, pp. 121–128. doi:10.1109/WAIN52551.2021.00026.

[6] S. Mart́ınez-Fernández, J. Bogner, X. Franch, M. Oriol, J. Siebert,
A. Trendowicz, A. M. Vollmer, S. Wagner, Software Engineering for
AI-Based Systems: A Survey, ACM Transactions on Software Engineer-
ing and Methodology 31 (2022) 37e:1–37e:59. URL: https://doi.org/
10.1145/3487043. doi:10.1145/3487043.

[7] J. Bosch, H. H. Olsson, I. Crnkovic, Engineering AI Sys-
tems: A Research Agenda, 2021. URL: https://www.

igi-global.com/chapter/engineering-ai-systems/www.

igi-global.com/chapter/engineering-ai-systems/266130.
doi:10.4018/978-1-7998-5101-1.ch001, iSBN: 9781799851011
Pages: 1-19 Publisher: IGI Global.

[8] U. Nations, THE 17 GOALS | Sustainable Development, 2022. URL:
https://sdgs.un.org/goals.

[9] H. B. Braiek, F. Khomh, On testing machine learning programs, Jour-
nal of Systems and Software 164 (2020) 110542. URL: https://www.

39

https://www.sciencedirect.com/science/article/pii/S0167739X14002040
https://www.sciencedirect.com/science/article/pii/S0167739X14002040
http://dx.doi.org/https://doi.org/10.1016/j.future.2014.10.011
http://dx.doi.org/10.1109/ICIS.2011.23
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.sciencedirect.com/science/article/pii/S0950705120307516
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1109/WAIN52551.2021.00026
https://doi.org/10.1145/3487043
https://doi.org/10.1145/3487043
http://dx.doi.org/10.1145/3487043
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.com/chapter/engineering-ai-systems/266130
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.com/chapter/engineering-ai-systems/266130
https://www.igi-global.com/chapter/engineering-ai-systems/www.igi-global.com/chapter/engineering-ai-systems/266130
http://dx.doi.org/10.4018/978-1-7998-5101-1.ch001
https://sdgs.un.org/goals
https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://www.sciencedirect.com/science/article/pii/S0164121220300248

sciencedirect.com/science/article/pii/S0164121220300248.
doi:https://doi.org/10.1016/j.jss.2020.110542.

[10] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A Sur-
vey on Bias and Fairness in Machine Learning, ACM Computing Surveys
54 (2021) 1–35. URL: https://dl.acm.org/doi/10.1145/3457607.
doi:10.1145/3457607.

[11] European Commission, Regulation of the european parliament and of
the council laying down harmonised rules on artificial intelligence (arti-
ficial intelligence act) and amending certain union legislative acts, 2021.
URL: https://eur-lex.europa.eu/resource.html?uri=cellar:

e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=

PDF.

[12] A. Sahay, A. Indamutsa, D. Di Ruscio, A. Pierantonio, Supporting the
understanding and comparison of low-code development platforms, in:
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE, 2020, pp. 171–178.

[13] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias, ProPublica,
May 23 (2016) 139–159.

[14] K. A. Austin, C. M. Christopher, D. Dickerson, Will I Pass the Bar
Exam: Predicting Student Success Using LSAT Scores and Law School
Performance, HofstrA l. rev. 45 (2016) 753. Publisher: HeinOnline.

[15] G. Giray, A software engineering perspective on engineering machine
learning systems: State of the art and challenges, Journal of Systems
and Software (2021) 111031.

[16] E. de Souza Nascimento, I. Ahmed, E. Oliveira, M. P. Palheta, I. Stein-
macher, T. Conte, Understanding development process of machine learn-
ing systems: Challenges and solutions, in: 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE, 2019, pp. 1–6.

[17] H. Villamizar, T. Escovedo, M. Kalinowski, Requirements engineering
for machine learning: A systematic mapping study, in: SEAA, 2021,
pp. 29–36.

40

https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://www.sciencedirect.com/science/article/pii/S0164121220300248
https://www.sciencedirect.com/science/article/pii/S0164121220300248
http://dx.doi.org/https://doi.org/10.1016/j.jss.2020.110542
https://dl.acm.org/doi/10.1145/3457607
http://dx.doi.org/10.1145/3457607
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e0649735-a372-11eb-9585-01aa75ed71a1.0001.02/DOC_1&format=PDF

[18] F. Kumeno, Sofware engneering challenges for machine learning appli-
cations: A literature review, Intelligent Decision Technologies 13 (2019)
463–476.

[19] J. M. Zhang, M. Harman, L. Ma, Y. Liu, Machine learning testing:
Survey, landscapes and horizons, IEEE Transactions on Software Engi-
neering (2020).

[20] ISO, ISO/IEC 25010:2011, Technical Report, 2011. URL:
https://www.iso.org/cms/render/live/en/sites/isoorg/

contents/data/standard/03/57/35733.html.

[21] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, T. Zimmermann, Software Engineering for Ma-
chine Learning: A Case Study, in: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), IEEE, Montreal, QC, Canada, 2019, pp.
291–300. URL: https://ieeexplore.ieee.org/document/8804457/.
doi:10.1109/ICSE-SEIP.2019.00042.

[22] S. Studer, T. B. Bui, C. Drescher, A. Hanuschkin, L. Winkler, S. Peters,
K.-R. Müller, Towards crisp-ml (q): a machine learning process model
with quality assurance methodology, Machine Learning and Knowledge
Extraction 3 (2021) 392–413.

[23] F. Mart́ınez-Plumed, L. Contreras-Ochando, C. Ferri, J. H. Orallo,
M. Kull, N. Lachiche, M. J. R. Quintana, P. A. Flach, Crisp-dm twenty
years later: From data mining processes to data science trajectories,
IEEE Transactions on Knowledge and Data Engineering (2019).

[24] K. Hamada, F. Ishikawa, S. Masuda, T. Myojin, Y. Nishi, H. Ogawa,
T. Toku, S. Tokumoto, K. Tsuchiya, Y. Ujita, et al., Guidelines for
quality assurance of machine learning-based artificial intelligence., in:
SEKE, 2020, pp. 335–341.

[25] S. Azimi, C. Pahl, A layered quality framework for machine learning-
driven data and information models., in: ICEIS (1), 2020, pp. 579–587.

[26] F. Ishikawa, Concepts in quality assessment for machine learning-from
test data to arguments, in: International Conference on Conceptual
Modeling, Springer, 2018, pp. 536–544.

41

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/57/35733.html
https://ieeexplore.ieee.org/document/8804457/
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00042

[27] J. Siebert, L. Joeckel, J. Heidrich, A. Trendowicz, K. Nakamichi,
K. Ohashi, I. Namba, R. Yamamoto, M. Aoyama, Construction of a
quality model for machine learning systems, Software Quality Journal
(2021) 1–29.

[28] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, M. Hinchey,
An overview of Dynamic Software Product Line architectures and
techniques: Observations from research and industry, Journal
of Systems and Software 91 (2014) 3–23. URL: https://www.

sciencedirect.com/science/article/pii/S0164121214000119.
doi:https://doi.org/10.1016/j.jss.2013.12.038.

[29] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson,
Feature-oriented domain analysis (FODA) feasibility study, Technical
Report, Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst,
1990.

[30] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of fea-
ture models 20 years later: A literature review, Information Systems
35 (2010) 615–636. URL: https://www.sciencedirect.com/science/
article/pii/S0306437910000025. doi:10.1016/j.is.2010.01.001.

[31] C. Di Sipio, J. Di Rocco, D. Di Ruscio, D. P. T. Nguyen, A Low-Code
Tool Supporting the Development of Recommender Systems, in: Fif-
teenth ACM Conference on Recommender Systems, ACM, Amsterdam
Netherlands, 2021, pp. 741–744. URL: https://dl.acm.org/doi/10.
1145/3460231.3478885. doi:10.1145/3460231.3478885.

[32] Z. Chen, J. M. Zhang, M. Hort, F. Sarro, M. Harman, Fairness Testing:
A Comprehensive Survey and Analysis of Trends, 2022. URL: http:
//arxiv.org/abs/2207.10223, arXiv:2207.10223 [cs].

[33] B. Johnson, Y. Brun, Fairkit-learn: a fairness evaluation and com-
parison toolkit, in: Proceedings of the ACM/IEEE 44th Interna-
tional Conference on Software Engineering: Companion Proceedings,
ICSE ’22, Association for Computing Machinery, New York, NY, USA,
2022, pp. 70–74. URL: https://doi.org/10.1145/3510454.3516830.
doi:10.1145/3510454.3516830.

42

https://www.sciencedirect.com/science/article/pii/S0164121214000119
https://www.sciencedirect.com/science/article/pii/S0164121214000119
http://dx.doi.org/https://doi.org/10.1016/j.jss.2013.12.038
https://www.sciencedirect.com/science/article/pii/S0306437910000025
https://www.sciencedirect.com/science/article/pii/S0306437910000025
http://dx.doi.org/10.1016/j.is.2010.01.001
https://dl.acm.org/doi/10.1145/3460231.3478885
https://dl.acm.org/doi/10.1145/3460231.3478885
http://dx.doi.org/10.1145/3460231.3478885
http://arxiv.org/abs/2207.10223
http://arxiv.org/abs/2207.10223
https://doi.org/10.1145/3510454.3516830
http://dx.doi.org/10.1145/3510454.3516830

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[35] M. S. A. Lee, J. Singh, The Landscape and Gaps in Open Source Fair-
ness Toolkits, in: Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI ’21, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 1–13. URL: https://doi.
org/10.1145/3411764.3445261. doi:10.1145/3411764.3445261.

[36] A. Yohannis, D. Kolovos, Towards model-based bias mitigation in ma-
chine learning, in: Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’22,
Association for Computing Machinery, New York, NY, USA, 2022, pp.
143–153. URL: https://doi.org/10.1145/3550355.3552401. doi:10.
1145/3550355.3552401.

[37] S. Apel, D. Batory, C. Kästner, G. Saake, Feature-oriented software
product lines, Springer, 2016.

[38] J. A. Galindo, D. Benavides, P. Trinidad, A.-M. Gutiérrez-Fernández,
A. Ruiz-Cortés, Automated analysis of feature models: Quo vadis?,
Computing 101 (2019) 387–433. URL: http://link.springer.com/

10.1007/s00607-018-0646-1. doi:10.1007/s00607-018-0646-1.

[39] P. Refaeilzadeh, L. Tang, H. Liu, Cross-Validation, Springer New
York, New York, NY, 2016, pp. 1–7. doi:10.1007/978-1-4899-7993-3\
_565-2.

[40] V. Grossi, B. Rapisarda, F. Giannotti, D. Pedreschi, Data science
at SoBigData: the European research infrastructure for social min-
ing and big data analytics, International Journal of Data Science
and Analytics 6 (2018) 205–216. URL: https://doi.org/10.1007/

s41060-018-0126-x. doi:10.1007/s41060-018-0126-x.

[41] M. Assante, L. Candela, D. Castelli, R. Cirillo, G. Coro, L. Frosini,
L. Lelii, F. Mangiacrapa, P. Pagano, G. Panichi, et al., Enacting open

43

https://doi.org/10.1145/3411764.3445261
https://doi.org/10.1145/3411764.3445261
http://dx.doi.org/10.1145/3411764.3445261
https://doi.org/10.1145/3550355.3552401
http://dx.doi.org/10.1145/3550355.3552401
http://dx.doi.org/10.1145/3550355.3552401
http://link.springer.com/10.1007/s00607-018-0646-1
http://link.springer.com/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1007/978-1-4899-7993-3_565-2
http://dx.doi.org/10.1007/978-1-4899-7993-3_565-2
https://doi.org/10.1007/s41060-018-0126-x
https://doi.org/10.1007/s41060-018-0126-x
http://dx.doi.org/10.1007/s41060-018-0126-x

science by d4science, Future Generation Computer Systems 101 (2019)
555–563.

[42] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich,
Featureide: An extensible framework for feature-oriented software de-
velopment, Science of Computer Programming 79 (2014) 70–85.

[43] S. Patro, K. K. Sahu, Normalization: A preprocessing stage, arXiv
preprint arXiv:1503.06462 (2015).

[44] M. Kearns, S. Neel, A. Roth, Z. S. Wu, An empirical study of rich
subgroup fairness for machine learning, in: Proceedings of the conference
on fairness, accountability, and transparency, 2019, pp. 100–109.

[45] L. E. Celis, L. Huang, V. Keswani, N. K. Vishnoi, Classification with
fairness constraints: A meta-algorithm with provable guarantees, in:
Proceedings of the conference on fairness, accountability, and trans-
parency, 2019, pp. 319–328.

[46] F. Kamiran, T. Calders, Data preprocessing techniques for clas-
sification without discrimination, Knowledge and Information Sys-
tems 33 (2012) 1–33. URL: http://link.springer.com/10.1007/

s10115-011-0463-8. doi:10.1007/s10115-011-0463-8.

[47] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, S. Venkatasub-
ramanian, Certifying and Removing Disparate Impact, in: Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, Sydney NSW Australia, 2015, pp.
259–268. URL: https://dl.acm.org/doi/10.1145/2783258.2783311.
doi:10.1145/2783258.2783311.

[48] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, H. Wallach, A
Reductions Approach to Fair Classification, in: Proceedings of the
35th International Conference on Machine Learning, PMLR, 2018,
pp. 60–69. URL: https://proceedings.mlr.press/v80/agarwal18a.
html, iSSN: 2640-3498.

[49] P. Putzel, S. Lee, Blackbox Post-Processing for Multiclass Fair-
ness, arXiv:2201.04461 [cs] (2022). URL: http://arxiv.org/abs/

2201.04461, arXiv: 2201.04461.

44

http://link.springer.com/10.1007/s10115-011-0463-8
http://link.springer.com/10.1007/s10115-011-0463-8
http://dx.doi.org/10.1007/s10115-011-0463-8
https://dl.acm.org/doi/10.1145/2783258.2783311
http://dx.doi.org/10.1145/2783258.2783311
https://proceedings.mlr.press/v80/agarwal18a.html
https://proceedings.mlr.press/v80/agarwal18a.html
http://arxiv.org/abs/2201.04461
http://arxiv.org/abs/2201.04461

[50] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan,
P. Lohia, J. Martino, S. Mehta, A. Mojsilović, et al., Ai fairness 360:
An extensible toolkit for detecting and mitigating algorithmic bias, IBM
Journal of Research and Development 63 (2019) 4–1.

[51] S. Bird, M. Dud́ık, R. Edgar, B. Horn, R. Lutz, V. Milan, M. Sameki,
H. Wallach, K. Walker, Fairlearn: A toolkit for assessing and improving
fairness in AI, Technical Report MSR-TR-2020-32, Microsoft, 2020.
URL: https://www.microsoft.com/en-us/research/publication/

fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

[52] G. d’Aloisio, G. Stilo, A. Di Marco, A. D’Angelo, Enhancing fairness in
classification tasks with multiple variables: A data-and model-agnostic
approach, in: International Workshop on Algorithmic Bias in Search
and Recommendation, Springer, 2022, pp. 117–129.

[53] P. Refaeilzadeh, L. Tang, H. Liu, Cross-validation., Encyclopedia of
database systems 5 (2009) 532–538.

[54] P.-E. Danielsson, Euclidean distance mapping, Computer Graphics and
image processing 14 (1980) 227–248.

[55] A. Singh, A. Yadav, A. Rana, K-means with three different distance
metrics, International Journal of Computer Applications 67 (2013).

[56] G. J. McLachlan, Mahalanobis distance, Resonance 4 (1999) 20–26.

[57] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, R. Zemel, Fairness through
awareness, Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference (2012) 214–226. URL: https://doi.org/10.1145/
2090236.2090255. doi:10.1145/2090236.2090255.

[58] M. Hardt, E. Price, E. Price, N. Srebro, Equality of Oppor-
tunity in Supervised Learning, in: Advances in Neural Infor-
mation Processing Systems, volume 29, Curran Associates, Inc.,
2016. URL: https://proceedings.neurips.cc/paper/2016/hash/

9d2682367c3935defcb1f9e247a97c0d-Abstract.html.

[59] R. Berk, H. Heidari, S. Jabbari, M. Kearns, A. Roth, Fair-
ness in criminal justice risk assessments: The state of the art,
https://doi.org/10.1177/0049124118782533 50 (2018) 3–44. URL:

45

https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
http://dx.doi.org/10.1145/2090236.2090255
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html

https://journals.sagepub.com/doi/10.1177/0049124118782533.
doi:10.1177/0049124118782533, publisher: SAGE PublicationsSage
CA: Los Angeles, CA.

[60] E. Lepeschkin, B. Surawicz, Characteristics of true-positive and false-
positive results of electrocardiographs master two-step exercise tests,
New England Journal of Medicine 258 (1958) 511–520.

[61] PalletsProject, Jinja website, 2023. URL: https://jinja.

palletsprojects.com/.

[62] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A survey of data-intensive
scientific workflow management, Journal of Grid Computing 13 (2015)
457–493.

[63] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, K. Thiel, B. Wiswedel, Knime - the konstanz information miner:
Version 2.0 and beyond, SIGKDD Explor. Newsl. 11 (2009) 26–31.
URL: https://doi-org.univaq.clas.cineca.it/10.1145/1656274.
1656280. doi:10.1145/1656274.1656280.

[64] Pickle documentation, 2023. URL: https://docs.python.org/3/

library/pickle.html.

[65] T.-S. Lim, W.-Y. Loh, Y.-S. Shih, A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification
algorithms, Machine learning 40 (2000) 203–228. Publisher: Springer.

[66] M. Redmond, A. Baveja, A data-driven software tool for enabling coop-
erative information sharing among police departments, European Jour-
nal of Operational Research 141 (2002) 660–678. Publisher: Elsevier.

[67] E. Fehrman, A. K. Muhammad, E. M. Mirkes, V. Egan, A. N. Gorban,
The Five Factor Model of Personality and Evaluation of Drug Con-
sumption Risk, in: F. Palumbo, A. Montanari, M. Vichi (Eds.), Data
Science, Studies in Classification, Data Analysis, and Knowledge Orga-
nization, Springer International Publishing, Cham, 2017, pp. 231–242.
doi:10.1007/978-3-319-55723-6_18.

[68] A. Tsanas, M. Little, P. McSharry, L. Ramig, Accurate telemonitoring
of Parkinson’s disease progression by non-invasive speech tests, Nature

46

https://journals.sagepub.com/doi/10.1177/0049124118782533
http://dx.doi.org/10.1177/0049124118782533
https://jinja.palletsprojects.com/
https://jinja.palletsprojects.com/
https://doi-org.univaq.clas.cineca.it/10.1145/1656274.1656280
https://doi-org.univaq.clas.cineca.it/10.1145/1656274.1656280
http://dx.doi.org/10.1145/1656274.1656280
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
http://dx.doi.org/10.1007/978-3-319-55723-6_18

Precedings (2009) 1–1. URL: https://www.nature.com/articles/

npre.2009.3920.1. doi:10.1038/npre.2009.3920.1, publisher: Na-
ture Publishing Group.

[69] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine
preferences by data mining from physicochemical properties, Decision
support systems 47 (2009) 547–553. Publisher: Elsevier.

[70] P. Domingos, M. Pazzani, On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss, Machine Learning 29 (1997) 103–130.
URL: https://doi.org/10.1023/A:1007413511361. doi:10.1023/A:
1007413511361.

[71] W. F. Ferger, The nature and use of the harmonic mean,
Journal of the American Statistical Association 26 (1931) 36
– 40. URL: https://www.scopus.com/inward/record.uri?

eid=2-s2.0-83055185035&doi=10.1080%2f01621459.1931.

10503148&partnerID=40&md5=66d14fb6f6ec05b27941150ae41da25c.
doi:10.1080/01621459.1931.10503148, cited by: 35.

[72] L. St, S. Wold, et al., Analysis of variance (anova), Chemometrics and
intelligent laboratory systems 6 (1989) 259–272.

[73] P. Runeson, M. Host, A. Rainer, B. Regnell, Case study research in
software engineering: Guidelines and examples, John Wiley & Sons,
2012.

[74] C. A. Ratanamahatana, D. Gunopulos, Scaling up the naive Bayesian
classifier: Using decision trees for feature selection (2002). Publisher:
Citeseer.

[75] G. Rosenfield, K. Fitzpatrick-Lins, A coefficient of agreement as a mea-
sure of thematic classification accuracy., Photogrammetric Engineering
and Remote Sensing 52 (1986) 223–227. URL: http://pubs.er.usgs.
gov/publication/70014667.

47

https://www.nature.com/articles/npre.2009.3920.1
https://www.nature.com/articles/npre.2009.3920.1
http://dx.doi.org/10.1038/npre.2009.3920.1
https://doi.org/10.1023/A:1007413511361
http://dx.doi.org/10.1023/A:1007413511361
http://dx.doi.org/10.1023/A:1007413511361
https://www.scopus.com/inward/record.uri?eid=2-s2.0-83055185035&doi=10.1080%2f01621459.1931.10503148&partnerID=40&md5=66d14fb6f6ec05b27941150ae41da25c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-83055185035&doi=10.1080%2f01621459.1931.10503148&partnerID=40&md5=66d14fb6f6ec05b27941150ae41da25c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-83055185035&doi=10.1080%2f01621459.1931.10503148&partnerID=40&md5=66d14fb6f6ec05b27941150ae41da25c
http://dx.doi.org/10.1080/01621459.1931.10503148
http://pubs.er.usgs.gov/publication/70014667
http://pubs.er.usgs.gov/publication/70014667

	Introduction
	Related Work
	Motivating Papers
	Related Approaches

	Considered Quality Evaluation Process
	MANILA Approach
	Extended Feature Model
	Web Application
	Feature Selection
	Experiment Generation and Execution

	MANILA Empirical Evaluation
	Expressiveness and Correctness Evaluation of MANILA
	Expressiveness Evaluation
	Correctness Evaluation

	User Evaluation of MANILA
	User Evaluation Description
	Evaluation Results

	Threats to Validity
	Conclusion and Future Work

