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Over the past decade, the study of bias and fairness in machine learning
has gained significant importance. Numerous definitions and metrics have been
introduced to address various types of bias and fairness [23]. In this document,
we first outline the definitions of bias and fairness that underpin the basis analysis
we conducted in the academic domain. Subsequently, for this purpose, we review
related research on bias mitigation within the context of binary and multi-class
classification tasks. Finally, we will provide details on the implementation needed
by the low-code platform we used to conduct the fairness assessment in academia.

1 Bias and Fairness definitions

Bias and unfairness can originate from various sources and be conceptualized in
multiple ways. In [23], the authors identified several potential sources of bias:

• the data used to train the ML algorithms (e.g., Measurement bias [27],
Omitted Variable bias [9, 6], or Representation bias [27]);

• the algorithm which may introduce bias in the users’ behavior (e.g., Al-
gorithmic bias [4]);

• the population, which generates the data used to train the models (e.g.,
Historical bias [27], Population bias [24], or Social bias [4]).

The former definitions of bias, with the only exception of Algorithmic bias, which
is strongly related to the ML algorithm, can be grouped into two macro-categories
of bias:

• Unbalanced Groups bias: in which the bias is generated by an unequal
distribution of instances in the population (e.g., Representation bias, His-
torical bias, Social bias, Population bias)
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• Confounding Variables bias: in which the bias is generated by a wrong
interpretation or representation of instances in the population (e.g., Mea-
surement bias, Omitted Variable bias)

Most of the methods available in the literature address the first category of bias
[14, 25, 7, 19], while the second category is more common in neural networks
[30].

Concerning fairness definitions, Demographic (Statistical) Parity (DP) [22,
13] is one of the most used definitions of group fairness [23], which assumes the
independence among the predicted positive label yp and the sensitive variables
S1, . . . , Sn. It is defined formally as follows:

Definition 1 (Demographic Parity) Let Ŷ be the predicted value, yp the pos-
itive label, and S a generic binary sensitive variable where S = 1 and S = 0
identify, respectively, the privileged and unprivileged groups. A predictor is fair
under Demographic Parity if:

P (Ŷ = yp|S = 1) = P (Ŷ = yp|S = 0) (1)

A different formulation for the DP is the Disparate Impact (DI) [15], which
considers the ratio among the two probabilities. In this case, following the 80%
rule [15], the value must be between 0.8 and 1.2 to have fairness. DI is defined
formally as follows:

Definition 2 (Disparate Impact) Let Ŷ be the predicted value, yp the positive
label, and S a generic binary sensitive variable where S = 1 and S = 0 identify
the privileged and unprivileged groups, respectively. A predictor is fair under
Disparate Impact if:

0.8 ≤ P (Ŷ = yp|S = 1)

P (Ŷ = yp|S = 0)
≤ 1.2 (2)

Equalised Odds (EO) [18] is the third definition of fairness we consider which
overcomes the limitation of DP by not removing the correlation between the true
and predicted outcomes [28, 18]. In fact, a classifier is considered fair under EO
if the probability of an item being positively classified is the same concerning the
sensitive variable and the ground truth. EO is formally defined as follows:

Definition 3 (Equalized Odds) Let Ŷ be the predicted value, Y the true
value, yp the positive label, and S a generic binary sensitive variable where
S = 1 and S = 0 identify the privileged and unprivileged groups, respectively. A
predictor is fair under Equalized Odds if:

P (Ŷ = yp|Y = y, S = 1) = P (Ŷ = yp|Y = y, S = 0) y ∈ {y1, . . . , yn} (3)
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Both DP and DI fall into the We Are Equal metrics family, which holds
that all groups have similar abilities concerning the task (i.e., have the same
probability of being classified in a certain way). On the contrary, EO resides in
the What You See Is What You Get family, which states that the observations
reflect the ability with respect to the task (i.e., an item should be classified in a
certain way only if the other attributes imply it) [16].

All these definitions were initially proposed for binary classification problems
(yp = 1). Still, they can be extended to the multi-class classification domain by
identifying one positive label value among the possible ones (yp ∈ {y1, . . . , yn}).

2 Multi-Class Fairness Methods

Over the years, many methods have been proposed to mitigate bias at different
levels of data processing[23, 8]. In particular, we distinguish among [10]:

• Pre-processing methods, which modify the data to remove the underlying
bias, such as, [19, 15];

• In-processing methods, which change the learning algorithm to remove
discrimination during the model training process, such as [12, 3];

• Post-processing methods, which re-calibrate an already trained model
using a holdout set not used during the training phase, such as [18, 26].

The sooner a technique can be applied, the better because it can be chained
with other bias mitigation methods in the later processing phases [29, 2].

Among the different machine learning problems (i.e. classification, regression,
clustering, etc.), the classification task has been the most addressed in bias
mitigation [23, 8]. In the following, we will focus on stable methods1 to improve
fairness in the classification task.

Most of the methods available in the literature focus only on binary classi-
fication with one sensitive variable [23]. Among them, one widely adopted pre-
processing method is the Sampling algorithm proposed by [19]. This method
balances privileged and unprivileged users in the case of binary classification with a
single sensitive variable. Formally, let be S the sensitive variable with {w, b} ∈ S
representing the privileged and unprivileged groups, respectively, and let be Y
the target label with {+,−} ∈ Y defining the positive and negative outcomes.
The Sampling algorithm first splits the original dataset into four groups:

• Deprived group with Positive label (DP): all instances with S = b∧Y = +;

1Stable methods are the ones having an available and stable implementation.
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• Deprived group with Negative label (DN): all instances with S = b∧Y = −;

• Favored group with Positive label (FP): all instances with S = w∧Y = +;

• Favored group with Negative label (FN): all instances with S = w∧Y = −.

Then, for each group, the algorithm computes its observed and expected sizes.
Finally, it balances the groups iteratively by randomly adding and removing in-
stances until the observed sizes of the groups are equal to their expected ones.

Very few methods are able to mitigate the bias in the multi-class clas-
sification problems [26, 3, 14]. Among those, there is the Blackbox post-
processing method proposed by [26]. The authors extend the method proposed
by [18] to the multi-class setting. Their approach involves the construction
of a linear program over the conditional probabilities of the adjusted predictor
P (Y adj = y adj|Ŷ = ŷ, A = a) such that the desired fairness criterion is satisfied
by those probabilities. In order to build the linear program, the authors formulate
both the loss and fairness criteria as linear constraints in terms of the protected
attribute conditional probability matrices. Then, this linear program is used to
find the label value, among the possible ones, that minimises both the loss and
the fairness constraints.

An in-processing method that solves unfairness in multiple classification set-
tings is the one presented by [3]. The algorithm addresses two definitions of
fairness at once: Demographic Parity and Equalized Odds. The authors for-
mulate such definitions as linear constraints and then build an Exponentiated
Gradient (EG) reduction algorithm [21] that yields a randomised classifier with
the lowest error subject to the desired fairness constraints. The method follows
a MinMax approach in which the players try to minimise the given constraint
and maximise the classifier’s score. The authors also propose a simplified Grid
Search version of the algorithm (GRID), which generates a sequence of relabelling
and reweightings, and trains a predictor for each one. The values yielding the
best accuracy and fairness trade-off are selected and thus returned. Although
the authors study their algorithms mainly in binary classification problems, they
also show how their method can be applied to regression and multi-classification
problems.

Finally, a pre-processing method able to improve fairness both in binary and
multi-class problems in an explainable way is the Debiaser for Multiple Variables
(DEMV) algorithm presented by d’Aloisio et al. in [14]. This algorithm extends
the Sampling algorithm of [19] by considering sensitive groups identified by all
possible combinations of the values of sensitive variables and the values of the
label. In particular, a sensitive group is defined as {X ∈ D|S1 == s1 ∧ S2 ==
s2 ∧ · · · ∧ Sn == sn ∧ L == l}, where s1, . . . , sn are possible values of the
sensitive variables and l is a value of the label.
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Then, for each group, the algorithm computes their observed (Wobs) and
expected (Wexp) sizes, defined respectively as:

Wobs =
|{X ∈ D|S = s ∧ L = l}|

|D|
(4)

Wexp =
|{X ∈ D|S = s}|

|D|
× |{X ∈ D|L = l}|

|D|
(5)

where S = s is a generic condition on the value of the sensitive variables and
L = l is a condition on the label’s value. If Wobs\Wexp < 1, it means that the
size of the group is smaller than expected, so the algorithm randomly duplicates
an item of that group. Instead, if Wobs\Wexp > 1, it means that the size of the
group is larger than expected, so the algorithm randomly removes an item from
the group. For each sensitive group, the algorithm repeats this process until the
group is fully balanced (i.e., Wobs\Wexp = 1).

3 Assessment Implementation

We conduct our fairness assessment in academics using MANILA, a low-code
tool for developing quality ML systems [11]. MANILA automatically generates
an experiment that evaluates different ML classifier and fairness method com-
binations and selects the one achieving the best fairness and effectiveness [5]
trade-off. The conducted assessment was implemented using MANILA, a low-
code platform designed for developing high-quality machine learning systems [11].
We recall that MANILA automatically constructs experiments to evaluate various
combinations of machine learning classifiers and fairness methods, identifying the
configuration that optimally balances fairness and effectiveness [5].

MANILA

  MANILA Experiment  
  Script

Experiment 
execution

Quality Attribute 1

Quality report

Best Quality
Method

Quality Attribute 2

Quality report

Best Quality
Method

MANILA
Extended Feature Model

Feature 
selection

Experiment 
generation

     MANILA Web 
     Application

Figure 1: MANILA Architecture as in [11]
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As described in [11], Figure 1 illustrates the high-level architecture of MANILA.
Rounded boxes denote steps within the quality-driven development process, while
square boxes represent corresponding artifacts. Steps involving human interven-
tion are indicated by boxes containing a user icon. Additionally, the tools utilized
for the implementation of each artifact are listed adjacent to the respective arti-
fact.

As in [11], we recall that the initial step in the quality-driven development
process involves selecting the features that constitute the experimental evalua-
tion. These features include machine learning models, quality-enhancing meth-
ods, metrics, dataset characteristics (e.g., label types or sensitive variables),
data scaling methods, cross-validation techniques, and result presentation for-
mats such as tables or charts. The data scientist might perform this step via a
dedicated web application.

Subsequently, the MANILA system automatically generates a set of Python
scripts to implement the experimental evaluation. The data scientist can then
execute these scripts directly using a Python interpreter. The execution produces
a series of reports for each selected attribute and identifies the machine learning
tuple (comprising the ML algorithm and quality-enhancing method) that achieves
the highest metric.

The process, as in the original paper, is underpinned by an Extended Feature
Model (ExtFM), which models the entire system [20] as a Software Product
Line [17]. The ExtFM defines constraints among features, such as between ML
models and quality-enhancing methods, ensuring the configuration of valid and
executable experiments. These constraints provide guidance to the data scientist,
ensuring that all experiments are properly configured and executable.

ML Algorithm 1

ML Algorithm 3

Quality evaluation experiment

Method n...Method 1

Explainability

Method 1 Method m...

Fairness

ML Algorithm 2

Fairness report

Fairness Metric 1
...

Fairness Metric j

Explainability report

Explainability Metric 1
...

Explainability Metric k

Best Fairness 
Method

Best
Explainability 

Method

Figure 2: Experimental evaluation as in [11]

In line with the original paper, Figure 2 illustrates an example of how MANILA
conducts a quality evaluation experiment. In this scenario, the data scientist
selects three machine learning algorithms and aims to ensure both Fairness and
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Explainability. To achieve these objectives, the data scientist chooses n methods
to enhance Fairness and m methods to enhance Explainability, along with j
metrics for Fairness and k metrics for Explainability.

Here, the evaluation process then executes two parallel sets of experiments.
In the first set, the n Fairness methods are applied to each machine learning
algorithm, and the j Fairness metrics are computed. The second set applies the
m Explainability methods to the algorithms, and the k Explainability metrics are
computed. Finally, the process generates two reports summarizing the results
for Fairness and Explainability, respectively, as well as identifying the machine
learning algorithms that achieve the best performance in each category.

The results are saved in a CSV file if the data scientist opts to view the results
in tabular form by selecting the Tabular feature in the ExtFM. Otherwise, the
results are visualized as charts saved in PNG format. Additionally, the machine
learning algorithm identified as the best performer in the experiment is saved as
a serialized pickle file [1].
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