Reconstruction Planning From Natural Disasters: A Systematic Mapping Study of Machine Learning and Technological Approaches

GHULAM MUDASSIR*, School of Computing, University of Buckingham, UK

ANTINISCA DI MARCO, Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Italy

Natural disasters have various adverse effects on human lives, making it challenging for authorities to manage post-disaster situations with limited resources. Due to the extreme extent of the damage, the huge amount of resources needed to restore life to normality makes such a situation challenging. For this purpose, different methodologies have been proposed to effectively handle these types of situations. All these methodologies consider different aspects of the post-earthquake context, taking into account core parameters such as the time and cost required for reconstruction, as well as the people directly affected by the earthquake. In this paper, we review different state-of-the-art techniques which have been proposed for different phases of post-earthquake situations, specifically for reconstruction planning. All these proposed solutions are differentiated on the basis of input data, parameters, and type of solutions (data sciences, civil engineering, social-economics, and modelling). The time range chosen to filter out relevant studies is between 2000 and 2025. Eventually, we review 53 related articles out of 45,552 analysed from seven different digital libraries. The obtained results guide us to reach a conclusion with respect to state-of-the-art selected studies.

Furthermore, these results reveal significant research gaps that can assist researchers in addressing post-earthquake incidents. By prioritising economic, social, and physical infrastructures, as well as facilities for affected individuals, they can utilise available resources more effectively.

CCS Concepts: • Computer systems organization \rightarrow Embedded systems; Redundancy; Robotics; • Networks \rightarrow Network reliability.

Additional Key Words and Phrases: Decision-support System; Natural Disaster; Social Benefits; Physical Dependencies; City Reconstruction Planning

ACM Reference Format:

 Ghulam Mudassir and Antinisca Di Marco. 2025. Reconstruction Planning From Natural Disasters: A Systematic Mapping Study of Machine Learning and Technological Approaches. *ACM Trans. Graph.* 37, 4, Article 111 (February 2025), 43 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

In recent years, numerous natural disasters have been reported, severely affecting various locations all over the world [Yi and Yang 2014]. According to an estimate, the damage cost due to natural disasters was approximately 67 billion dollars per year in the last decade [Guha-Sapir et al. 2012]. The ratio of economic loss due to these disasters has

Authors' addresses: Ghulam Mudassir, ghulam.mudassir@buckingham.ac.uk, School of Computing, University of Buckingham, Buckingham, UK, MK181EG; Antinisca Di Marco, antinisca.dimarco@univaq.it, Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy, 67100.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 ACM. Manuscript submitted to ACM

Manuscript submitted to ACM

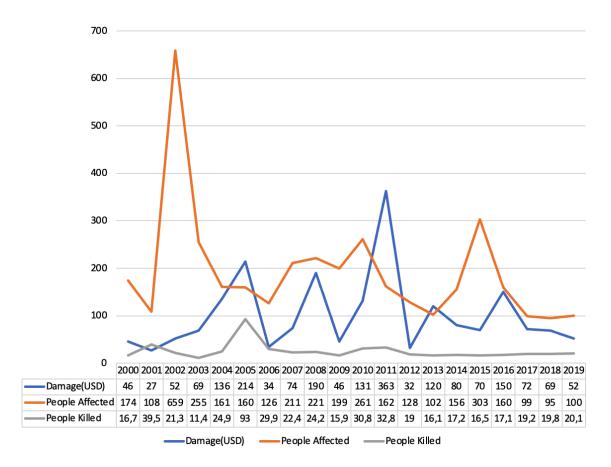


Fig. 1. Global statistics on the economic and humanitarian impact of natural disasters between 2000 and 2019 [United Nations Office for Disaster Risk Reduction (UNDRR) 2021]

increased 14 times since 1950 [Yi and Yang 2014]. In addition, these disasters not only impacted the economy, but, more importantly, thousands of people also lost their lives. From 1994 to 2003, almost 54,000 people lost their lives in different kinds of natural disasters. According to a 2003 survey, at least one person out of 25 was affected by natural disasters [Guha-Sapir et al. 2004]. The United Nations Office for Disaster Risk Reduction (UNISDR) also presented a report on different types of disasters in the last two decades [Unisdr 2012]. UNISDR statistics show that most of these disasters occur in developing countries compared to developed countries. For example, in August 2002, a drought occurred in China, while in December 2004, a tsunami affected millions of people in Indonesia, Sri Lanka, Malaysia, and nearby countries. In October 2010, a massive earthquake occurred in Pakistan, and also in May 2008, the same kind of earthquake occurred in China. Concerningly, these massive natural disasters are happening more frequently in recent years, mainly due to climate change [Berlemann and Steinhardt 2017].

According to the UNISDR report, among all these disasters, 44% were due to floods, 28% storms, 8% earthquakes, 6% extreme temperatures, 5% landslides, 5% droughts, 3% wildfires, 1% volcanic activities, and < 1% mass movements [CRED [n. d.]]. Subsequently, the economic loss and the loss of human lives are extremely significant, as shown in Fig.1, which Manuscript submitted to ACM

Reconstruction Planning From Natural Disasters: A Systematic Mapping Study of Machine Learning and Technological Approaches

shows the global economic and humanitarian impact of natural disasters from the years 2000 to 2019, as by data reported in [Chaudhary and Piracha 2021].

Recovery of damaged infrastructure in case of a natural disaster is time-consuming and costly due to the requirement of resources such as material, labour force, cost, and time, among others [Ghannad et al. 2020]. For example, the disaster caused by Hurricane Katrina in 2005 required five years of recovery and one billion dollars in completion costs [Petterson et al. 2006]. Similarly, in the Hyogoken-Nanbu earthquake in Japan, it took 20 months only to reconstruct the highway [Chang and Nojima 2001]. Given the impact that natural disasters cause, authorities must make quick and efficient decisions to overcome disaster situations as soon as possible. Additionally, the extended restoration time can have a significant impact on the local community, both socially and economically. For this purpose, substantial resource management is required, including budget allocation and time management. Post-disaster recovery plans have been proposed to address these challenges [Karlaftis et al. 2007].

The post-disaster recovery plan is defined by [Contreras et al. 2014] as a "complex multidimensional long-term process that involves planning, financing, decision making, and reconstruction". According to the United Nations Development Program (UNDP), the post-disaster recovery phase is divided into four sub-phases [Programme 2019]: relief, early recovery, recovery, and development. Relief, gives priority to saving people's lives with the help of search and rescue (SAR) operations [Alexander 2006]; early recovery phase consists of rehabilitation of roads and identification of damage buildings [Alexander 2006]; recovery has the goal of restoring basic services and start reconstruction of buildings including roads by considering social relationship of effected communities [Alexander 2006]; development focuses to strengthen the economy and improving quality of life [Alexander 2006].

Public decision-makers, including politicians, public servants, and citizens, frequently face challenges when developing a comprehensive recovery and reconstruction plan. Recovery plans must address all formal and informal requirements of the affected area as quickly as possible. They must also consider the needs of the local community, the vulnerability of buildings, the budget, and the time required to complete the plan. Additionally, decision-makers should ensure that the reconstruction effort enhances the resilience of both physical infrastructure and communities by taking into account stability factors to cope with future disasters.

The post-disaster recovery (PDR) phase encompasses three key components: *goal, phase*, and *process* [Lindell 2013]. Each of these components is crucial for the long-term reconstruction of infrastructure. According to the World Bank [Jha 2010], "Post Disaster Reconstruction begins with a series of decisions that must be made almost immediately. Despite the urgency of these decisions, they have long-term impacts, altering the lives of those affected by disaster for years to come." Moreover, inadequate post-disaster recovery often results in ongoing issues such as vulnerability and instability, a reality observed in many countries that have experienced disasters but failed to implement a proper recovery process [El-Masri and Tipple 2002].

While the PDR stage is critical, it still lacks a comprehensive definition that includes detailed objectives, characteristics, and content [Miller and Rivera 2010]. It is also known by other terms, including Post Disaster Recovery [Nagamatsu and Hayashi 2012], Post Disaster Rebuilding [Olshansky et al. 2006], and Post Disaster Redevelopment [Simunovich 2008]. Although these terminologies differ, no thorough mapping study has yet been conducted to clarify the distinctions between these concepts. Nevertheless, the ultimate aim of all these terms is to restore households, infrastructure, businesses, and government activities to their pre-disaster "normal" levels.

In this paper, we present a mapping study that identifies existing approaches to post-disaster reconstruction planning in urban areas, specifically focusing on earthquakes and the application of data science methods. By "data science approaches," we refer to mathematical techniques, including operational research and optimization models, computational models, and advanced solutions such as machine learning.

The mapping study provides an overview of the current state-of-the-art solutions for these issues, detailing the proposed methods and the characteristics of the data science techniques applied to post-disaster reconstruction planning. Through this study, we aim to highlight the limitations of the existing solutions and identify current research gaps that can inform future work.

Given the complexity of this problem, we intend to classify the current literature on reconstruction planning techniques after natural disasters more effectively. This paper aims to uncover gaps in the research and summarize improvements across various proposed techniques to better prepare for future natural disasters.

Additionally, our goal in this mapping study is to investigate the research techniques utilized by the majority of scholars and to identify the most active areas of research in this critical field. We have addressed all the defined research questions, which is why we are conducting a systematic mapping study instead of typical secondary analyses.

This paper presents the most recent insights on post-earthquake reconstruction planning, detailing both the advantages and limitations of various proposed techniques. We believe that the findings from this mapping study will be beneficial to researchers and inspire new approaches in this crucial field. Additionally, our study aims to identify research gaps that can guide future investigations and offer innovative directions for ongoing research.

Our main contributions are as follows:

- An analysis of the state of the art that covers methodologies aimed at addressing various types of post-disaster emergencies, published over the past twenty-five years (from 2000 to 2025) across seven different digital libraries.
- A presentation of research trends within the specified time frame.
- An overview of the limitations of the selected primary studies and an identification of open issues that need to be addressed in this research area.

The remainder of the paper proceeds as follows: Section 2 presents the literature review , Section 3 presents the mapping study process, Section 4 presents the results of the systematic mapping study, Section 5 presents a potential research area, Section 6 presents a threat to validity, and Section 7 concludes the paper.

2 RELATED WORK

Research on post-disaster reconstruction planning has gained momentum due to a series of devastating disasters in the past decade. Over time, the focus of research has evolved from merely reporting challenges to identifying key factors and patterns, and more recently, to developing theories and models through theoretical analysis and quantitative methods [Yi and Yang 2014]. The reconstruction process typically involves two main components: rebuilding housing and restoring essential infrastructure such as roads, ports, electricity, railways, and water systems. In many countries, housing is treated as the top priority in post-disaster efforts, as it directly addresses the immediate needs of affected communities and is often the government's primary focus [Hidayat et al. 2010].

For our mapping study, we have used seven digital libraries such as IEEE Explorer, Science Direct, MDPI, ACM, Springer, Scopus, and Web of Science. Only limited studies dealt with post-disaster reconstruction planning issues. Some of the approaches from these libraries have been mentioned in this section, but have been detailed in the appendix. For example, Mfon et al.[Mfon and Olurotimi 2023] proposed a theoretical framework for rapid post-disaster reconstruction Manuscript submitted to ACM

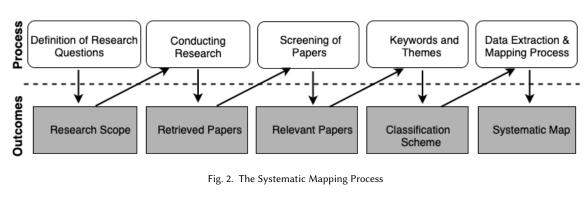
Reconstruction Planning From Natural Disasters: A Systematic Mapping Study of Machine Learning and Technological Approaches

that takes into account social, economic, and environmental factors, along with the provision of relief to affected communities. Fan et al. [Fan et al. 2023] introduced a decision-support model that combines graph convolutional neural networks with deep reinforcement learning to restore road networks in post-disaster contexts. The model is pre-trained on a range of simulated damage scenarios, enabling it to quickly generate near-optimal recovery strategies when an actual disaster occurs. An et al. [An et al. 2016] introduced an algorithm that integrates geographic information system (GIS) data collected through detailed surveys by the Institute of Engineering Mechanics (IEM) and the China Earthquake Administration (CEA) with Synthetic Aperture Radar (SAR) imagery to assess damage after disasters. Similarly, Doi et al. [Doi et al. 2016] developed a reconstruction planning method utilising 2D models and 3D renderings, while Mayo et al. [Mayo et al. 2006] conducted a comparative analysis between the Intelligent Master Planning (IMP) approach and Conventional Master Planning (CMP). In addition, several studies have proposed formal modelling techniques aimed at optimising various aspects of the reconstruction process. Similarly, Goujon et al. [Goujon and Labreuche 2015] proposed a multi-criteria decision-making model for post-disaster reconstruction planning, utilising the Myriad tool [Labreuche and Le Huédé 2005] to prioritise damaged infrastructure and assess reconstruction projects based on population needs. Qiushan et al. [Li et al. 2019] developed a post-disaster reconstruction framework focused on rebuilding residential and commercial structures, which was implemented in Dujiangyan central city. This framework emphasises the vital role of various stakeholders, such as markets, local businesses, and social institutions, in driving economic recovery by generating employment opportunities and accelerating reconstruction efforts. However, it builds on conventional methodologies and does not leverage advanced technologies like machine learning to manage post-earthquake scenarios. Moreover, the multicriteria decision making (MCDM) model introduced by Opricovic et al. [Opricovic and Tzeng 2002a] was designed to support the analysis and modelling of post-disaster reconstruction planning. A core strength of this model lies in its ability to identify the most suitable reconstruction alternative based on predefined input parameters such as time, cost, damage severity, and sustainability.

Based on our analysis of the existing scientific literature, to the best of our knowledge, no comprehensive review, whether in the form of a survey or a systematic mapping study, has been conducted to organise and categorise research focused specifically on post-disaster reconstruction planning. Therefore, our current effort is motivated by the need and opportunity to systematically document, classify, and analyse the body of work published over the past 25 years in this domain.

3 MAPPING STUDY PROCESS

In this section, we describe the process we performed to carry out the systematic mapping study, following the guidelines proposed by [Petersen et al. 2015].


Figure 2 summarises the overall workflow. In the figure, rounded rectangles represent *process* and grey rectangles represent *outcomes* of each process. The general workflow consisted of six steps, namely: *definition of research questions, conducting research, screening of papers, keywords and themes* and *data extraction & mapping process.* Each process yields a specific outcome, which ultimately creates our mapping study.

In the following, we describe each process of the workflow and the resulting outcomes in detail.

3.1 Definition of Research Questions

This mapping study aims to provide an overview of the research related to the adoption of AI and ML approaches to post-earthquake reconstruction. This leads us to the following research questions, formulated using the Goal-Question-Metric approach from [Petersen et al. 2015]

Manuscript submitted to ACM

The query we have formulated for the Goal-Question-Metric approach is the following:

Analyse the state-of-the-art post-disaster approaches for the purpose of infrastructure reconstruction planning with respect to the social benefits of affected people, politicians' role and policies, physical dependencies, time and cost for reconstruction, to what extent these methodologies including machine learning have been evaluated, latest active research in this domain from the point of view of researchers, and practitioners in the context of post-disaster reconstruction planning.

The main aim of this mapping study is to determine how post-disaster reconstruction has been managed using models and information technology. According to the goal of our paper, we have defined the following research questions (RQs). In presenting each RQ, we include the aim and rationale of every question we formulated:

RQ1: What kind of problems have been addressed in the post-disaster management research domain?
 Aim: The aim of this RQ is to identify all issues related to post-disaster situations that have been addressed in literature.

Rationale: In the post-disaster phase, administrators are called to develop reconstruction planning. We aim to understand the extent to which researchers have helped institutions in the reconstruction planning phase.

• RQ2: What approaches are used to address post-disaster reconstruction issues?

Aim: The aim of this RQ is to focus on identifying the kind of proposed approaches e.g Machine Learning, to handle the post-disaster situation.

Rationale: On behalf of RQ2 we have clearly defined the criteria about the inclusion of primary studies, anything outside of these criteria will be excluded.

• RQ3: Which parameters of post-disaster reconstruction are mainly considered by the literature?

Aim: Main aim of this question is to identify the key factors (such as required cost, number of affected people, or damage to buildings) mainly considered in the literature.

Rationale: Through this RQ, we can identify key attributes used in all proposed models, and we can propose a taxonomy based on that.

 RQ4: What kind of limitations (i.e., threats to validity and limits) have been observed in the post-disaster reconstruction research domain?

Aim: The aim of RQ4 is to focus on the limitation and threats to validity in proposed approaches.

Manuscript submitted to ACM

321

327

332 333 334

339

340

347 348 349

350

351

345

346

362

363

Rationale: Through this RQ, we discuss the threat to the validity of the considered primary study approach, and we can also sketch research gaps and future work.

• **RO5:** What are the top popular venues and publication trends for the post-disaster management domain? Aim: Aim of this RQ is to note down all venues which are publishing articles in the computer science and social science domain related to post-disaster management. Additionally, we aim to highlight the research interest and expertise of researchers in this domain from 2000 to 2025.

Rationale: Purpose of this RQ is to understand the venues that are publishing most of the primary studies related to the post-disaster management topic. Additionally, the rationale of this RQ is to understand the main research field (e.g., computer science, civil engineering, mathematics) of authors publishing papers in this domain. Therefore, this RQ can be divided into the following sub-RQs:

- **RQ5.1:** What are the main publishing venues?
- **RQ5.2:** What are the main research trends from 2000 to 2025?
- **RQ5.3:** What are the main research fields of authors publishing in this research domain?
- **RQ6:** What are the main research gaps (i.e., open issues) in the research domain? Aim: This RQ describes research gaps or grey areas which have not been explored by the literature so far. Rationale: The rationale for this RQ is to find directions of unexplored areas for future research.

3.2 Literature Review

We apply the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach for literature identification and review [Moher et al. 2010]. Figure 3 reports the main PRISMA stages (on the left-most blue vertical columns) and the number of papers involved in each step.

The Conducting Research phase (see Section 3.2.1) concerns the development of research protocols by identifying the keywords and bibliographic databases to perform the search. The Screening phase (see Section 3.2.2) involves defining inclusion and exclusion criteria, as well as the time frame limit, for filtering the main articles. Eventually, the Included phase details the main articles selected after applying the screening criteria.

In the following, we detail each phase of the PRISMA workflow.

- 3.2.1 Conducting Research. We have used the PICOC (Population, Intervention, Comparison, Outcome, Context) [Petticrew and Roberts 2008] criteria to formulate search strings from research questions.
 - Population: In this context, population means all those people who are directly affected due to an earthquake or a post-disaster.
 - Intervention: Intervention is the approach that is used to solve an issue. For example, the technologies or algorithms used to handle a post-earthquake situation.
 - Comparison: In this study, we compare different approaches from the 'Intervention' step. However, at this level, the alternative strategies are addressed from a qualitative, but not empirical, perspective.
 - Outcome: Here we focus on factors of importance in the considered methodology like effectiveness, efficiency, or resilience of the reconstruction planning methods which is quite worthy for researchers.
 - Context: In this study, we consider works coming from both industry and academia.

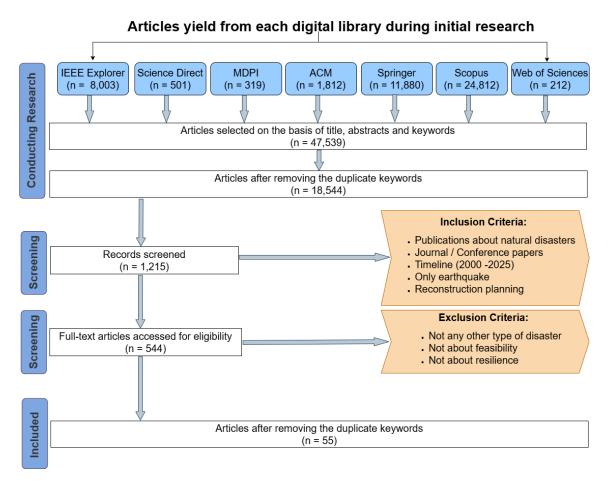


Fig. 3. PRISMA flow diagram performed in our study

To find out the most relevant studies that were published over the last twenty five years (2000 to 2025), we performed an automatic search from seven selected digital libraries, namely: IEEE Explorer, ¹ ACM, ² Science Direct, ³ Springer Link, ⁴ Web of Sciences, ⁵ Scopus, ⁶ and MDPI. ⁷ These libraries cover most of the academic literature published. All of these databases have been selected based on the experience reported by [Kastrati et al. 2021].

To search for the most relevant studies, we have identified a set of keywords and related synonyms. Next, we have constructed search strings using Boolean operators (i.e., AND and OR). The full query strings are reported in Table 1

The quasi-gold standard, as explained in the following paragraph, is employed to identify the most relevant primary studies for a specific time frame (2000 to 2025) across conferences and journals [Zhang et al. 2011]. The search string

¹https://ieeexplore.ieee.org/Xplore/home.jsp

²https://dl.acm.org/

³https://www.sciencedirect.com/

⁴https://link.springer.com/

⁵https://apps.webofknowledge.com/

⁶https://www.scopus.com/

⁷https://www.mdpi.com/

Manuscript submitted to ACM

consists of identified keywords that are utilized in all the databases listed in Table 1. Among the selected databases, the IEEE and ACM Digital Libraries have been chosen due to their inclusion of leading international journals and prominent conferences and workshops focusing on data sciences and disaster management. Additionally, we have included ScienceDirect and SpringerLink, as they are comprehensive digital libraries that offer extensive online scientific collections and index-based international journals. The Web of Science (WoS) is also considered, as it is one of the oldest citation indexes for the sciences and contains a collection of scholarly publishing journals, proceedings, and data compilations [Birkle et al. 2020].

To broaden the scope of our research to encompass social and economic perspectives, we ran search string queries in the Scopus digital library. Its developers claim it includes works from 4,000 publishers in social science fields and asserts that it is the "largest single abstract and indexing database ever built" [Burnham 2006]. Lastly, we have also taken into account the MDPI digital library, as it is becoming a prominent publisher in this area.

The concept of the *Quasi-Gold Standard* is outlined in [Zhang et al. 2011] and is based on two key criteria: the venue (where) and the time period (when). Using these criteria, we identified relevant publications from the seven specified venues/databases, as summarised in Table 1, through a combination of automated and manual searches. Additionally, the Quasi-Gold Standard (QGS) serves as a valuable tool for assessing search strategies aimed at locating pertinent literature within a defined time frame.

With the assistance of QGS, we compiled a set of studies from related venues, including domain-specific conferences and journals, recognised for the time span from 2000 to 2025. Subsequently, we identified the top publication venues in the fields of computer science and social sciences, as detailed in Table 2.

One significant advantage of using QGS is its ability to efficiently filter relevant studies by focusing solely on the titles and abstracts of the articles. Traditional manual and automated search methods can be time-consuming when it comes to sifting through data and narrowing down publication venues; however, QGS streamlines this process considerably. After identifying relevant studies with QGS, we applied the inclusion and exclusion criteria outlined in subsection 3.2.2. Ultimately, we selected 53 primary studies from the available venues.

Furthermore, we have also applied the backwards snowball technique to avoid missing any relevant primary study published from 2000 onward [Wohlin 2014]. The backwards snowballing technique involves reviewing references cited in relevant papers, which increases the likelihood of discovering relevant studies [Zhang et al. 2011]. In this whole process, we follow the guidelines of Wohlin [Zhang et al. 2011].

- 3.2.2 Screening of Papers. In this section, we have defined inclusion and exclusion criteria for those studies which are retrieved from automated and manual searches and evaluated by two authors to decide whether these articles should be included based on their title, abstract, and keywords. For inclusion, we have applied the following criteria.
 - I1: Studies which are about research methods and results of the considered research domain.
 - I2: Studies must have gone under peer-review process and published in leading venues such as journals, conference proceedings, and workshop proceedings.
 - I3: Studies about the earthquake.
 - I4: Studies that were published from 2000 to 2025.
 - I5: Studies written in English.

The studies that fall into at least one of the following exclusion criteria are excluded.

• E1: Studies that are not focused on earthquakes.

Database	Search String
IEEE Explorer	("Post disaster" OR "post-disaster" OR "reconstruction planning" OR "earthquak AND ("Housing" OR "city" OR "system" OR "building" OR "facilities" OR "road ("bridge" OR "infrastructure") NOT ("Detection" OR "rescue" OR "cyclone" OR "eru tion" OR "tsunami" OR "resilience" OR "temporary" OR "feasibility" OR "authent OR "war" OR "flood" OR "tornado"))
ACM	("Post disaster" OR "post-disaster" OR "reconstruction planning" OR "earthquak AND ("Housing" OR "city" OR "system" OR "building" OR "facilities" OR "road ("bridge" OR "infrastructure") AND NOT ("Detection" OR "rescue" OR "cyclor OR "eruption" OR "tsunami" OR "resilience" OR "temporary" OR "feasibility" ("authentic" OR "war" OR "flood" OR "tornado"))
Science Direct	("Post disaster" OR "post-disaster" OR "reconstruction planning") AND("City" ("building" OR "road") AND NOT ("Cyclone" OR "Tsunami")
Springer Link	("Post disaster" OR "post-disaster" OR "reconstruction planning") AND ("Housing OR "city" OR "system" OR "building" OR "facilities" OR "road" OR "bridge" ("infrastructure") AND NOT ("Detection" OR "rescue" OR "cyclone" OR "eruptic OR "Tsunami" OR "resilience" OR "temporary" OR "feasibility" OR "authentic" ("war" OR "flood" OR "tornado")
Web of Sciences	("Post disaster" OR "post-disaster" OR "reconstruction planning") AND ("Housin OR "city" OR "system" OR "building" OR "facilities" OR "road OR "bridge" OR "frastructure") AND NOT ("Detection" OR "rescue" OR "cyclone" OR "eruption" ("Tsunami" OR "resilience" OR "temporary" OR "feasibility" OR "authentic" OR "w OR "flood" OR "tornado")
SCOPUS	("Post disaster" OR "post-disaster" OR "reconstruction planning" OR "earthquak AND ("housing" OR "city" OR "system" OR "building" OR "facilities" OR "roa OR "bridge" OR "infrastructure") AND NOT ("detection" OR "rescue" OR "cyclor OR "eruption" OR "tsunami" OR "resilience" OR "temporary" OR "feasibility" ("authentic" OR "war" OR "flood" OR "tornado")
MDPI	("Post disaster" OR "post-disaster" OR "reconstruction planning" OR "earthquak AND ("Housing" OR "city" OR "system" OR "building" OR "facilities" OR "road ("bridge" OR "infrastructure")

- m of some panel discussion.
- E3: Studies that are just about proposing guidelines, recommendations about disaster situations.
- E4: Secondary studies (such as mapping studies).
- E5: Studies that are not Peer-reviewed.

507

508

509 510

511

512

513

514 515

516

517

518 519

520

- E6: Studies that are not written in English.
- E7: Duplicate studies which are published in different venues on various stages of their evolution.

We applied inclusion and exclusion criteria to relevant studies identified in digital libraries to determine their eligibility for our research, validating a time span from 2000 to 2025. During the full-text review, we excluded additional articles that did not meet our criteria. For the remaining articles, we employed a snowballing technique, which led us to discover five more relevant studies.

Furthermore, we ensured the reliability of the included studies for our systematic mapping by utilising Fleiss' Kappa [Fleiss et al. 2013]. This statistical method assesses the reliability of agreement among a fixed number of raters who Manuscript submitted to ACM

classify items based on their nature. The method produces a score in binary form, where 0 indicates poor agreement and 1 indicates full agreement. Throughout this process, we enlisted the help of four independent raters to classify a random sample of 30 studies; 20 of these were already included in our mapping study, while 10 were not. The calculated Fleiss' Kappa result was 0.94, indicating a high level of agreement among the raters.

Additionally, Figure 4 illustrates the percentage of primary studies sourced from seven different digital libraries. According to the distribution, IEEE Explorer contains 38%, Science Direct 17%, MDPI 7%, ACM 19%, Springer 7%, Scopus 6%, and Web of Science 6% of the overall selected primary studies.

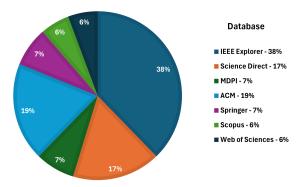


Fig. 4. Primary studies percentage in each database

3.2.3 Keywords and Themes. We have selected 53 articles after a thorough review process and applying inclusion and exclusion criteria following the PRISMA approach.

Figure 5 illustrates the proportion of primary studies sourced from each digital library. The "IEEE Xplore" has the highest number of primary studies, containing 18 articles. In comparison, the "ACM" digital library has 10 articles, while "Science Direct" includes 9 articles. The MDPI digital library has only 4 articles, and both "Springer Link" and "Web of Science" comprise 3 articles each. Scopus contributes the least, with only 2 relevant articles. Additionally, there are a few articles that appear in multiple libraries. For example, there are two common articles between the IEEE and ACM libraries, and Scopus shares 3 articles with IEEE Xplore.

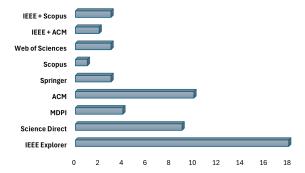


Fig. 5. Selected primary studies

Table 2. Venues Investigation during creation of Quasi-Gold Standard.

Publication Venue	Subject Area	Type	Databases
ISCRAM	Computer Sciences / Social Sci-	Conf.	IEEE Explorer
	ences		
CACIE	Computer Sciences / Social Sci-	Journal	Web of Sciences
	ences		
Disasters	Social Sciences	Journal	ACM
ICT-DM	Computer Sciences / Social Sci-	Conf.	IEEE Explorer
	ences		
RCIS	Computer Sciences / Social Sci-	Conf.	Springer
	ences		
Journal of Big Data	Computer Sciences	Journal	Springer
Decision Support Systems	Computer Sciences	Journal	ScienceDir.
Advanced Engineering Informatics	Computer Sciences	Journal	ScienceDir.
ICAISC	Computer Sciences	Conf.	Web of Sci.
Expert Systems with Applications	Computer Sciences	Journal	ScienceDir.
Big Data and Society	Computer Sciences / Social Sci-	Journal	IEEE/ACM
	ences		

Quality Assessment: After selecting a set of 53 relevant studies, we conducted a quality assessment using the most advanced quality assessment models from [Adams et al. 2017], [Yasin and Hasnain 2012], [Kitchenham et al. 2009] and [Tyndall 2018]. Based on the recommendations provided in these models, we developed a quality assessment checklist, which is presented in Table 3. This checklist includes six different criteria and both subjective and objective questions aimed at verifying the validity of the sources, assessing their suitability, and ensuring they are free from bias.

Using this checklist, we evaluated the quality of the selected literature. By applying specific selection criteria, we effectively excluded all irrelevant studies, which minimised the effort required for the quality assessment activity [Garousi et al. 2019]. These criteria are based on factors such as authority of the producer, methodology, scope, objectivity, novelty, and impact.

Additionally, we can utilise the same selection criteria for other research methods, such as surveys, case studies, or experiments, to further assess the quality of studies. For instance, [Host and Runeson 2007] proposed a quality assessment checklist specifically for case studies, which can also be applied to case studies in formal literature.

3.2.4 Data Extraction & Mapping Process. To extract data from the selected primary studies and address the research questions defined in subsection 3.1, we have created Table 4. This table includes key "Data Items" related to the research questions. According to [Brereton et al. 2007], it is beneficial for one researcher to extract the data while another reviews the extraction. Therefore, we employed a two-author approach for the data extraction process. This verification by the authors is a common practice in systematic mapping studies, as noted by [Petticrew and Roberts 2008]. Our defined data extraction strategy ensures that the same criteria are applied consistently across all selected papers, including their classifications.

Analysis and classification:

The extracted information is explained and visually illustrated in subsection 3.2.4. During the analysis of the study identification phase, the extracted strategies were categorised based on different search approaches, including the Manuscript submitted to ACM

Table 3. Quality assessment checklist of relevant literature for mapping study.

Criteria	Questions					
Producer Authority	• Is publishing institution/platform reputable? E.g., Progress of Disaster Sci-					
	ence					
	Is the author associated with a publishing institute?					
	Has the author published any other work in this field?					
	• Does the author has expertise in this area? (e.g. job title principal software					
	engineer or expert civil engineer)					
Methodology	Does proposed methodology have clearly stated aim?					
	 Does proposed approach is supported by authentic references? 					
	 Any limitation of proposed methodology clearly stated? 					
	 Does proposed work based on specific research questions and all question 					
	responded effectively?					
	 Does the proposed methodology validated by real case study? 					
Scope	Does this work related to our mapping study domain?					
Objectivity	Is this work balanced in presentation and clearly stated?					
	Is problem statement clearly state the objective?					
	 Is this work refer to a particular vendor? 					
	 Are conclusions of this work supported by data? 					
Novelty	Does this work introduce a new idea?					
Impact	 Check the impact of the considered study with respect to the following 					
_	criteria.					
	- Number of paper citations					
	- Number of paper backlinks					
	- Number of paper views /read					

development of the search, evaluation processes, and criteria for inclusion and exclusion. Each of these categories was then assigned themes and sub-themes. The sub-themes were utilised in the inclusion and exclusion process (also known as a priori), which relied on strategies such as resolving disagreements between researchers to minimise bias [Petersen and Ali 2011]. Finally, the selected papers were counted according to their respective themes and sub-themes.

Data Synthesis: In the data synthesis phase, we extracted and summarized information in a meaningful manner to address the defined research questions (RQs). For this purpose, we employed various techniques for data synthesis based on the guidelines of [Keele et al. 2007] for systematic literature reviews (SLRs), along with methods for synthesising evidence in software engineering research [Cruzes and Dybå 2010]. These techniques encompass various approaches, including descriptive synthesis, quantitative synthesis, qualitative synthesis, thematic analysis, and meta-analysis. Additionally, we used a descriptive technique, as illustrated in Figure 6, to categorise the publication types (book chapters, conferences, journals, or symposiums) of the selected studies in terms of their venue. Figure 7 provides an overview of the publication ratio of the selected studies over the past two decades (2000 to 2021). Furthermore, we established a classification scheme based on topic-related keywords to effectively respond to certain research questions. These classifications are particularly useful for the mapping process.

Table 4. Data Extraction

Data Item	Value	RÇ
Article ID	Integer	
Author Name	Author's name list	
Title of Articles	Name of the article	RÇ
Keyword	Keyword study indexing	RÇ
Publication Year	Calendar year	RQ
Venue	Publication venue name	RQ
Reconstruction	Reconstruction of buildings , infrastructure (roads,	RÇ
	bridges), economics, education and health	
Phase	Rescue phase (to evacuate the people)	RQ
Social Benefits	Social benefits of affected people	RQ
Planning	Reconstruction planning of buildings	RQ
Emergency management	Rescue and facilitate people in post-disaster situation	RQ
Contribution type	whether this article is based on some tool, solution	RQ
	methodology or consist of case study	
Optimization model	Optimization model is used in proposed study	RQ
Machine learning	Machine learning algorithm is used in the proposed	RQ
	study	
Mathematical model	Mathematical model is used in proposed study	RQ
Characteristic	Which parameters are used in proposed study/ algorithm	RQ
Search Strategy	Guidelines about search strategy that which is followed	RQ
	to select the studies	
Visualization Type	Which technique is used to visualize the data	RÇ
Classification schemes	How were articles classified	RÇ
Search Type	Manual or automated	RÇ
Open Issues	Limitation of proposed study	RÇ
Domain Expertise	Keywords extracted from the venue description	RQ

4 SYSTEMATIC MAPPING STUDY RESULTS

 We conducted a mapping study in accordance with the guidelines outlined in section 3 and our research questions. In the initial search, we identified 43 papers based on criteria such as year, country, affiliations, venue, and topic, applying our inclusion criteria. After updating our searches in line with the systematic mapping protocols [Petersen et al. 2015], we discovered 10 additional papers that met the defined inclusion criteria. Ultimately, we finalised a total of 53 primary studies. A brief summary of all the studies considered can be found in Appendix A.

Figure 8 provides a detailed summary of selected primary studies from seven different digital libraries. The chart includes information about the digital libraries where these studies were published, as well as the type of solutions proposed by the authors—whether they pertain to Social & Economics, data sciences, modelling, or civil engineering (as discussed in subsection 4.4). The outermost doughnut circle displays the references for the relevant primary studies.

4.1 Mapping of Primary Studies According to Publication Type

We have reviewed primary studies published across various platforms, including book chapters (1 study), conference articles (18 studies), journal articles (28 studies), and symposiums (6 studies). The contributions from these studies are illustrated in Figure 6 based on publication type. Journals emerged as the most popular publication platform, Manuscript submitted to ACM

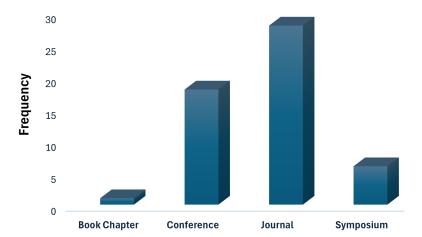


Fig. 6. Distribution of selected studies with respect to publication type

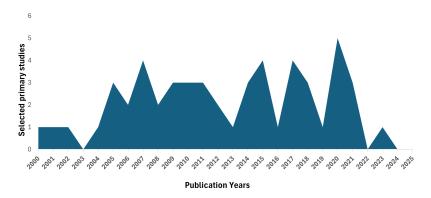


Fig. 7. Distribution of selected studies with respect to time span

accounting for approximately 52.8% of the selected studies related to reconstruction planning in post-disaster situations. In comparison, conference articles comprised 33.9%, symposium contributions made up 11.32%, and book chapters represented the least common type, contributing around 1.88%.

Appendix B provides details on all 53 selected studies, including their publication venues, study types, research topics, the number of studies in each category, and references for the published works. These studies come from 47 different reputable venues. Specifically, there are 28 studies published in 23 different journals, 18 studies from 14 different conferences, and 6 studies from 6 different symposia, which includes one primary study from a book chapter.

Overall, Figure 6 illustrates that all these forums are of high quality and make significant contributions to our systematic mapping.

4.2 Mapping of Primary Studies According to Publication Years

The distribution of selected studies based on publication years from 2000 to 2025 is illustrated in Figure 7. The X-axis represents the publication years, while the Y-axis indicates the number of selected primary studies.

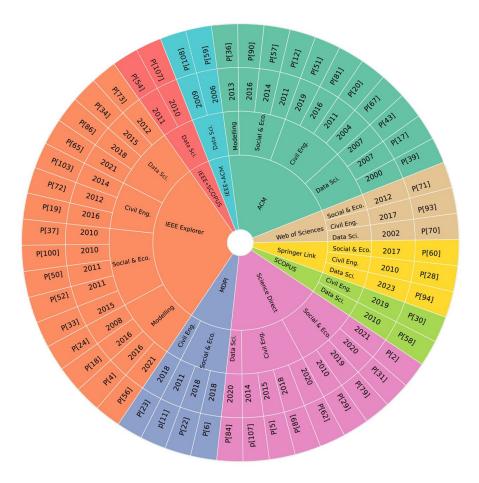


Fig. 8. Distribution of publications Techniques used for sentiment analysis across years

The results show that researchers began focusing on post-disaster reconstruction planning between 2000 and 2002, utilising technical algorithms. There was little progress in 2003; however, in 2004, significant advancements were made, continuing until 2007. Following this period, there was a slight decline in research output in 2008.

In 2009, the volume of research and publications increased and remained consistent until 2011. Subsequently, a rapid decline in research activity was observed in 2013, 2015, and 2019. However, there was a swift resurgence in research in the following years, except for 2025, within the domain of post-earthquake reconstruction.

4.3 Mapping of Primary Studies According to Research Facet

For the research facet, we have used the classification scheme proposed by [Wieringa et al. 2006] and [Durelli et al. 2019] to categorise primary studies according to the nature or type of research. These classifications are very simple and straightforward, as explained in the following in Table 5.

Solution Proposal: These kinds of papers propose a novel solution to the problem without a full-blown validation since these solutions are explained by proof of concept with the help of an example, a sound argument, or by some Manuscript submitted to ACM

Table 5. Studies Classification According To Research Type

Research Type	Number of Studies	
Solution Proposal	15	
Solution Proposal and evaluation research	17	
Solution Proposal and validation research	19	
Philosophical papers	1	
Opinion and Personal Experience	1	

other means. We have found 15 solution proposals from selected studies.

Evaluation Research: Evaluation research is categorised as empirical research and it is based on research methods to evaluate novel solutions. All studies that are based on formal methods, such as hypothesis testing and performed experiments on real-world case studies, are considered under evaluation research. Our 17 primary studies lie in the 'solution proposal and evaluation research' category.

Validation Research: Validation research provides preliminary empirical evidence of the solution proposal that has been implemented. It is based on very deep and methodologically sound research steps to verify all relevant studies. These research steps include quasi-experiments, prototyping, mathematical analysis, and case studies, which are used to collect evidence as well as for thorough investigations. We have found 18 primary studies in this category of research type.

Philosophical Papers: According to [Wieringa et al. 2006], these studies are based on a new conceptual framework or a new way to look at current research. Only 1 primary study exists in this criteria.

Opinion Papers: These articles just describe the opinion of authors about some research area, like whether it is wrong, good or needs improvement by using some other methods or techniques. Only 1 'opinion paper' exists in our primary studies

Personal Experience Papers: These studies are based on the author's personal experience from one or more projects. They focus more on What the researchers has learned rather Why. These articles mostly come from industry practitioners or researchers who used to work practically on some tool and don't have discussion and methodology sections. In these type of, studies author's mention their experience in the form of a list. Thus, the evidence in these papers is often anecdotal in nature.

We can create more categories beyond the five shown in Table 5, but not all combinations would be worthwhile. For instance, a paper may propose a new technique, include validation, and conclude with a discussion section in which the author shares opinions on the work of other researchers. However, such papers don't fit neatly into defined categories. Due to these limitations, it is impossible to establish more categories [Wieringa et al. 2006].

The selected primary studies related to reconstruction planning in natural disasters are listed in Table 5 and have been classified into relevant categories. Almost 28.8% of the papers do not provide comprehensive validation or empirically grounded evidence, relying instead on proof of concepts. These 15 studies were classified as solution proposals. From this data, we can conclude that the relevant studies on reconstruction planning in the context of natural disasters are relatively weak in terms of scientific rigour.

The second type of primary research studies listed in Table 5 is solution proposal and evaluation research, which includes 16 studies. These studies provide high-quality evidence through experiments conducted on real case studies that assess the applicability of innovative solutions.

Validation research studies analyze the potential contribution of selected studies with respect to the experimental setup and mathematical analysis. These kinds of studies are a bit more than solution proposals because some researchers have started working in this domain in the last few years which is why we have found 18 studies as shown in Table. 5.

Currently, only one primary study is categorized under philosophical papers, as there are not many individuals proposing new conceptual frameworks in this domain.

Similarly, there is only one primary study that falls into the opinion and personal experience category.

Additionally, we employed an evaluation classification scheme from [Durelli et al. 2019] to provide a more in-depth classification of selected primary studies into two categories: *real case study* and *limited experiment*, as illustrated in Table ??.

Table 6. Evaluation Methods in Primary Studies

Evaluation Method	Primary Studies	Total
Real Case Study (Application of solution on real data as real context)	PS6, PS9, PS13, PS15, PS23, PS17, PS21, PS10, PS3, PS47, PS32, PS19, PS22, PS36, PS45, PS26, PS18, PS35, PS48, PS30, PS20, PS31, PS33, PS39, PS43, PS5, PS7, PS46, PS52, PS53	30
Limited Experiment (Application of solu- tion unsolicited data on very simple case study)	PS11, PS14, PS24, PS1, PS25, PS8, PS2, PS50, PS41, PS44, PS49, PS51, PS38, PS29, PS37, PS34, PS42, PS12, PS16, PS4, PS28, PS40, PS27	23

Most of the primary studies employ empirical strategies to support and evaluate their proposed techniques. However, while reviewing the selected studies, we noticed that various papers include sections titled "Case Study" or "Experiment" to validate their proposed solutions. To address this, we have categorised the selected studies into two evaluation methods

Real Case Study: is just a research method where the researcher explores the proposed solution or topic in depth and validates on a real dataset.

Limited Experiment: is another research method where different variables are used in algorithms to test the hypothesis.

4.4 Mapping of Primary Studies According Post-Disaster Reconstruction Planning Solution Domain Facet

The mapping and classification of primary studies related to post-disaster reconstruction planning (PDRP) solutions begin immediately after data extraction. This process gathers detailed information about current research in post-earthquake reconstruction. It involves two reviewers who work through two distinct steps. In the first step, a systematic mapping is conducted. In the second step, a classification of the solution domain is created, which consists of four categories: social and economic factors, data science, modeling, and civil engineering, as shown in Table 7.

Here following we have explained all these categories with respect to primary studies.

4.4.1 Solution & Economics (Social & Eco.): Those multi-disciplinary studies which are based on economic, social, political, and cultural related studies. [Eichengreen 2007].

During mapping study, we came to know some researchers have proposed social & economic studies for post-disaster reconstruction planning. The goal of all these types studies is to overcome the post-disaster situation by considering social and economic factor. However, it's really difficult to handle such circumstances by this way but even though according to Table 7 we have found 19 studies that provide social & economic solution for post-earthquake reconstruction planning.

Manuscript submitted to ACM

Table 7. PDRP Solution Facet in Primary Studies

PDRP Domain	Res. Topics	Primary Studies	Total
			Count
Social & Economics	1- Social Sciences,	PS13, PS46, PS45, PS30,	19
	Social and Economic Experts,	PS39, PS21, PS28, PS15,	
	3- Management Experts.	PS37, PS33, PS27, PS42,	
		PS9, PS35, PS48, PS10, PS44,	
		PS25,PS5	
Data Sciences	1- Data Sciences,	PS8, PS17, PS11, PS7, PS12,	15
	2- Data Analytics,	PS19, PS47, PS22, PS29,	
	Intelligent Master Planning,	PS1, PS50, PS34, PS24, PS52,	
	4- Reinforcement Learning.	PS53	
Modelling	1- Decision Model,	PS31, PS6, PS4, PS38, PS26	5
	Modelling by Using Software,		
	3- Computer Aided Design,		
	4- 3S Planning Technique.		
Civil Engineering	1- Structural Engineering,	PS2, PS40, PS16, PS20, PS3,	14
	Hydraulic Engineering,	PS49, PS14, PS18, PS23,	
	3- Transportation infrastructure engi-	PS32, PS36, PS41, PS43,	
	neering,	PS51	
	4- Transportation System Engineer.		

4.4.2 Data Sciences: These studies handle post-disaster situation by applying tools and techniques on vast volume of data to find meaningful information for decision making [Provost and Fawcett 2013].

In this regard we have found 15 articles which use algorithmic techniques like genetic algorithms to handle postearthquake reconstruction planning problems but the overall percentage of these types of articles is 28.3% from selected studies.

4.4.3 Modelling: To solve the challenging problem sometimes it's really difficult for researchers to use advanced algorithms or to provide a mathematical solution than authors use modelling techniques for solution implementation. That's why we have observed during mapping study few authors have proposed simulation solutions but overall percentage of these kinds of articles is very less which is 9.4% from selected studies.

4.4.4 Civil Engineering: All these primary studies are based on professional designing and development of the infrastructure or experience papers [Reich 1997]. Percentage of these kinds of articles is similar to algorithms type solutions which are (26.4%).

Classification of Studies According to the Information Learned

According to the results, we have extracted information from different primary studies like solution proposals, empirical studies, evaluation research, philosophical papers, survey papers, opinion papers. However, during information extraction [Saleem and Latif 2012] we have considered key attributes like damage level in the area, required time for reconstruction of properties, cost/budget required to reconstruct properties, and the number of people who got affected by the disaster in the damaged area. Some studies have shown information on abstract level for instance, graphs or graphical representations which are: PS28, PS46, PS33, PS31, PS26, PS1, PS31, PS38, PS4, PS48, PS15, PS39, PS25, PS27, PS44, PS46, PS30, PS21, PS42.

In this mapping we have also found empirical research articles like: PS24, PS50, PS8, PS12, PS22, PS534, PS17, PS43, PS11, PS18, PS7, PS19, PS41, PS47, PS29, PS1, PS50, PS52, PS53.

Rest of the primary studies are considered as a general category because every article contains some key attributes. All these articles are mentioned in Appendix A.

4.6 Classification of Studies According to IT Solution and Civil Engineering Field

As we go further in-depth for mapping study analysis we have analyzed 25 papers based on IT solution and 29 papers suggesting solutions from the civil engineering field from total of 53 studies.

Additionally, the proportion of civil engineering solutions is more than IT because post-earth reconstruction problem is more oriented to the civil engineering field.

4.7 Most Fertile Researchers in Area

On behalf of primary studies, we have analyzed publications trends as well as the number of published articles by each author to check research impacts in this particular area. We have found few active researchers those have published few papers in last twenty five years [Mudassir 2022] like: PS9 [Opricovic and Tzeng 2002a], PS25 [Tavakkol et al. 2016], PS46 [Ghannad et al. 2020], PS47 [Rodriguez Coca 2020], PS52 [Mudassir and Di Marco 2021] and PS53 [Xiao et al. 2023]. Although the publication rate of articles increased in 2007, 2015, 2018, and then up to 2025 according to fig.7. But, based on results and thorough analysis, we came to know that no research group deals with this critical problem by using cutting-edge technologies like machine learning.

5 POTENTIAL RESEARCH AREAS

On the basis of the results of the mapping study, we can say that few people have tried to work but a not fair amount of research has been carried out in this domain. Most of the studies are based on a graphical representation of the damaged area instead of empirical research. That's why we can say that most research efforts are not methodologically sound and some issues remain unexplored. We have found various kinds of potential research directions especially the use of cutting-edge technologies in this critical domain of reconstruction planning in a post-earthquake situation.

Using cutting-edge technologies like machine learning in this area could be very useful because according to the results of the mapping study, we have found only one article PS52 [Mudassir and Di Marco 2021] that has used the DDQN reinforcement learning algorithm for reconstruction planning apart from that which no one has used. Creating a reconstruction plan manually is a real challenge for decision makers. Because it is really hard for them to maintain balance in all formal and informal requirements including a guarantee to repopulate the damaged area. Secondly, it is compulsory to consider the benefits of affected people that come from optimizing some values, e.g., the vulnerability of buildings, the budget, and time required to accomplish the building plan [Mudassir et al. 2025]. Development plans must be implemented according to the new strategies devised to drive future development, including taking into account the sustainability factor.

Furthermore, another aspect that public decision makers do not consider is the societal impact and relative benefits that citizens experience from the implementation of a certain recovery plan [Mudassir et al. [n. d.]]. Indeed, the societal impact and benefits are different in every plan, but these are the key features that should be considered in all post-disaster phases.

For the aforementioned complexities, machine learning algorithms are the best solution that can provide a mechanism to public decision-makers, servants, and citizens that can help effectively to define and evaluate rebuilding plans.

Manuscript submitted to ACM

Reconstruction Planning From Natural Disasters: A Systematic Mapping Study of Machine Learning and Technological Approaches

Thus, more empirical and detailed research is required to analyze how machine learning algorithms can be used to define reconstruction plans in a post-earthquake situation.

6 THREAT TO VALIDITY

There are many aspects that need to be considered when assessing systematic mapping study which can potentially limit the validity of the findings but in this section, we have discussed possible validity threats to our systematic mapping study regarding analysis, conduct, design, and clarifications. We have considered threats like bias in the selection of digital libraries, inaccuracy in data extraction, bias in the time frame for primary studies, bias in the definition of search strings, and publication bias.

Bias selection of digital libraries means we might have a distortion in statistical analysis in the selection of all those libraries which contain or do not contain too many related studies. We handled this threat (to at least some extent) by defining comprehensive inclusion and exclusion criteria for post-disaster situation-related studies.

Secondly, *inaccuracy of data extraction* and misclassifications can occur during information extraction which is done by reviewing it in a different ways. To minimize these kinds of discrepancies (to at least some extent) were solved by consensus by all reviewers.

Thirdly *bias in the time frame for primary studies* for this purpose we have considered articles from 2000 to 2025 range to mitigate chances not to miss any recent relevant study.

Fourthly to tackle *bias in search string* we have used all techniques like tabs, quotes, hyphens to exclude words and asterisk wildcard tips (at least some extent) to make a comprehensive string.

Lastly, *publication bias* refers sometimes positive problems published more as compared to negative and also negative results take longer time to be published and usually cited fewer [Kitchenham and Charters 2007]. To tackle this threat (at least some extent) we have scanned all related journals and conferences apart from grey literature like reports or Ph.D. thesis and unpublished results because all these kinds of things may affect the validity of our results.

Additionally, in this section we have also used classification schemes of [Petersen and Gencel 2013], [Campbell 1963] and [Wohlin et al. 2012]. According to these schemes following types of validity threats have been taken into account which is: descriptive validity, theoretical validity, internal validity, external validity, and conclusion validity. All these have explained the following.

6.1 Descriptive validity

Descriptive validity is about the accuracy and objectivity of collected information. Usually, threats of descriptive validity exist more in qualitative studies as compared to quantitative studies. For this purpose, we have designed a data collection form to record the data related to post-earthquake situations and also describe the process of data extraction in Table 4 and reviewed many times to not miss any related article. Additionally, this form can be revisited whenever required for primary studies. So this threat is handled very effectively.

6.2 Theoretical validity

Theoretical validity is about to determine collected data about post-earthquake situation fits into intended what we have required without any bias selection. Because there is always a chance to miss some relevant studies e.g [Wohlin et al. 2013] did work on two mapping studies on the same topic and ended up with different articles. We have used PRISMA [Song et al. 2021] and backward snowball sampling techniques [Jalali and Wohlin 2012] to handle this threat in subsection 3.2.

Manuscript submitted to ACM

6.3 Internal Validity

 Internal validity is based on two main threats which are missing relevant studies and bias in paper selection by researchers. By the way, mapping studies consider a wide range of related articles from different databases [Kitchenham et al. 2015]. So in our mapping study, we have considered the seven most widely used digital libraries to minimize the chance of not missing any relevant study about the post-disaster situation. We believe most of the related primary studies are considered but still, we can't rule out the possibility that we might have missed some relevant studies during the automatic search in digital libraries. Additionally, we also used quasi-gold standard (subsection 3.2) to validate the completeness of automated searches strings which are based on RQs keywords.

Researchers' bias in paper selection might also lead to inaccuracy in data extraction. For this purpose, we have defined data inclusion (DI's) criteria in Table. 4 for data extraction, where all researchers were agreed and if there was any conflict in data extraction we settled by mutual consensus.

6.4 External Validity

According to [Petersen and Gencel 2013] external validity of systematic mapping study is about how much findings are generalizable and useful for other population interests. So the major threat is whether considered primary studies are representing the subject area or not. For this purpose, we have followed the standard research process and considered all relevant studies apart from those which were not in English.

Additionally, some primary studies do not provide full information for extraction form, in that case, we have assumed some information on behalf of DIs during data synthesis. Similarly, some approaches did not describe drawbacks.

6.5 Conclusion Validity

Conclusion validity is about up to how much we reached on reasonable conclusion as well as the relationship between selected studies and current research trends in the considered field. To handle the first threat we have answered all defined RQs on behalf of selected primary studies. Regarding the second threat about data extraction, classification and synthesis were performed as a team. However, still, there is a chance to miss any relevant study because qualitative-based mapping study is really difficult and can be missed in any article.

7 CONCLUSION

This mapping study has identified related literature and evaluated with respect to topics, frequency of publications up to 2025, publication venues, and type of disaster.

We believe our mapping study is based on a comprehensive and state-of-the-art overview in post-earthquake reconstruction planning studies which is quite useful for young researchers and practitioners to get an idea about this challenging field and make a contribution by using cutting-edge technologies.

We have answered all defined research questions (RQs) with the help of analysis and results on behalf of our systematic mapping study.

RQ1: What kind of problems have been addressed in our research domain?

According to our primary studies, we have considered only earthquake related studies which are published in the last twenty five years (from 2000 to 2025). After thoroughly studying we have found 19 types of problems and all these Manuscript submitted to ACM

are classified in following Table. 8.

Table 8. Problems addressed in primary studies

Problems	Primary Studies
Reconstruction criteria definition	PS1, PS8, PS12, PS15, PS16, PS23,
	PS30, PS28, PS48
Resources management	PS3, PS14 ,PS21
Socio-economic policy definition	PS19, PS36, PS39, PS46, PS49
Stakeholders involvement	PS9, PS17, PS20, PS26
Data collection	PS5, PS7, PS27, PS29, PS33, PS35,
	PS44, PS51, PS53
Data visualization	PS4, PS40
Reconstruction planning with social aspects	PS10, PS13, PS34
Resource management	PS3, PS14, PS21
Agent-based reconstruction mechanism	PS37
Cost estimation	PS43
Data modelling	PS24
Decision making	PS25
Index-based reconstruction mechanism	PS45
Master planning	PS11
Metrics definition	PS31
Reconstruction criteria for damage roads	PS47
Reconstruction plan generation	PS52
Sustainable recovery	PS2
Temporary housing	PS22

RQ2: What approaches are used to address these problems?

The approaches which we have found in primary studies to solve post-earthquake reconstruction problem are categorized into four types which are: Optimization Model (mathematical model), Decision frameworks (implemented algorithms which can mange resources, cost, time etc. in post-disaster situation), Machine Learning, Geographical Information System, Visualization model (undirected graph or maps of damage area) and Real experience reports (studies which describe practical implementation of reconstruction plan) as shown in Table 9.

RQ3: Which parameters are used in proposed approaches?

In selected studies, we had the analysis of all those attributes/ input parameters which are used in proposed methodologies. We have categorised these parameters into three different tables on behalf of methodologies (algorithmic and mathematical models, visualization models, and real experience reports). Overall 16 attributes have been noticed which are: time, cost, political priority (PP), damage level (DL), resident numbers (RN),city data (CD), physical dependencies (PD) people opinion (PO), gross domestic production (GDP), sustainability (Sustainbi.), state disaster recovery coordinator (SDRC), 3D, seismic strength (SS), stiffness, historical and cultural (H & C) and environment (Env.). Details of each primary study with respect to parameter/attributes is mentioned in Table 11, 12, and 13. Reference (Ref) column

Table 9. Papers grouped based on approach.

Approaches	Primary Studies
Optimization model	PS1, PS24, PS20, PS17, PS12, PS13, PS15, PS21,
	PS27, PS28, PS29, PS34, PS35, PS39, PS7, PS44,
	PS46, PS47, PS53
Decision frameworks	PS2, PS25, PS9, PS10, PS19, PS18, PS16, PS14,
	PS26, PS48, PS31, PS50, PS32, PS33,PS51, PS36,
	PS37, PS38, PS41, PS43, PS45, PS49, PS22, PS30
Machine learning	PS52
Geographical information system	PS5, PS11, PS6
Visualization model	PS4, PS40
Real experience reports	PS3, PS8, PS23, PS42

Table 10. Papers grouped based on approach.

Limitations	Primary Studies
Availability of updated data	PS4, PS14, PS6, PS18, PS49, PS13, PS30, PS48,
	PS37, PS23, PS26, PS33, PS8, PS11, PS38, PS45,
	PS47, PS19, PS39, PS50, PS51, PS53
Computational resources	PS1, PS12, PS42, PS34, PS16, PS2, PS29, PS9,
	PS5, PS46, PS31, PS40, PS35, PS24, PS43, PS20,
	PS27, PS17, PS32, PS41, PS22, PS44, PS28, PS36,
	PS52
Model efficiency (not validated on real case studies)	PS3, PS10, PS21, PS7, PS15, PS25

contains related to paper and in *input parameters* column contain parameters which are mentioned by "x" if it exists in the corresponding paper and blank space vice versa.

RQ4: What kind of limitations (i.e., threats to validity and limits) have been observed in our research domain?

According to primary studies our focus is about reconstruction planning of infrastructure in post-earthquake situation. After deep analysis we have observed three types of limitations in available articles which are: Availability of updated data, Computational resources and Model efficiency (not validated on real case studies). All primary studies have been categorised with respect to their limitations in Table. 10.

RQ5: What is the publication trends for the considered research domain? Further, it is divided into sub-questions:?

During the search of primary studies, we have found 11 venues which contain most of the primary studies related to the post-earthquake reconstruction domain. All those venues including research trends and expertise required, are explained in the following sub-questions.

• RQ5.1: What are the top published venues?

1249
1250
1251

Ref		Input Parameters															
PS[Ref]	Time	Cost	PP	DL	RN	CD	PD	PO	GDP	Sustainbi.	SDRC	3D	SS	Stiffness	H&C	Env.	SB
PS1	X	X	X			X			X	X	X						Ī
PS2		X		X		X			X		X						
PS5		X						X									
PS6		X		X	X							X					
PS7		X		X													
PS9			X		X	X							X				
PS10	X	X															
PS11			X	X		X			X								
PS12		X	X		X												
PS13	X		X		X			X									
PS14				X	X	X											
PS15	X	X	X	X		X											
PS16		X	X	X							X						
PS17	X		X			X											
PS18		X		X											X		
PS19				X	X	X											
PS20	X	X	X			X		X									\vdash
PS21		X															
PS22				X	X										X		
PS24		X						X									
PS25				X		X					X						
PS26	X	X						X					X				
PS27	X			X		X								X			
PS28		X		X	X										X		
PS29		X	X	X	X					X							
PS30			X		X	X											\vdash
PS31	X	X	X	X		X			X			X	X				\vdash
PS32	X		X			X					X						\vdash
PS33		X		X		X									X		\vdash
P34				X	X	X					X						\vdash
PS35	X	X	X			X					X						\vdash
PS36	21	X	- 11			- 11		X						X			
PS37		Λ.		X	X			X					X	7.			
PS38		X		X				- /1	X				-		X		_
PS39		X		- 1					X					X			
PS41	X	X								X							\vdash
PS43		X	X	X	X	_					X						\vdash
PS44		X	X	Λ.	X											X	_
PS45		^	X		X	X									X		_
PS45 PS46		X	X		X	_^					X				^		-
PS46 PS47		X	X	X	X		X				^					X	_
PS47 PS48		^	X	X	X	X							X				₩
PS48 PS49		v	X	X				-							X		<u> </u>
PS49 PS50		X	Λ	X	X				X						^	X	_
			v	Λ					_ ^				X			_ ^	_
PS51	v	X	X	v	X	V	V						_ X				V
PS52	X	X	X	X	X	X	X										X
PS53	X	X		X	1		X	1									

Ref								I	nput Pa	rameters						
PS[Ref]	Time	Cost	PP	DL	RN	CD	PD	PO	GDP	Sustainbi.	SDRC	3D	SS	Stiffness	H&C	Env.
PS4	X	X	X			X		X				X				
DCAO				v		v										

Table 12. Visualization Models common Parameter Table

Table 13. Real Experience Reports Common Parameter Table

13	03	
13	04	
13	05	
13	06	

Ref								I	nput Pa	rameters						
PS[Ref]	Time	Cost	PP	DL	RN	CD	PD	PO	GDP	Sustainbi.	SDRC	3D	SS	Stiffness	H&C	Env.
PS3				X	X	X				X						
PS8	X			X		X										
PS23		X		X							X					
PS42	X			X				X								

 In total, we have found 46 different venues on behalf of selected primary studies. Among those only 11 conferences/journals (venues) are the most popular which contain more than one primary studies. These popular venues are ISCRAM, CACIE, disasters, ICT-DM, RCIS, Journal of Big Data, decision Support Systems, Advance Engineering Informatics, ICAIS, Expert Systems with Applications, and Big Data and Society as shown in Table 2.

• **RQ5.2**: What are the research trends in a time span of last two decades?

According to fig. 7 research trends vary from 2000 to 2025. In 2000 only a few people were working then this ratio goes down in 2003, again in 2007 research trend goes on top then we can see slight fall in 2008. Later again variation continues in the following years like in 2014, 2017 and 2020 research trends are on top. But all these studies have tried to solve the post-earthquake situation by using different techniques.

• **RQ5.3:** What is the expertise required in this research do-main?

From primary studies, we came to know that reconstruction planning is related to civil engineering but during reconstruction, we also need to consider the social aspect of affect communities. For this purpose, researcher needs expertise in social sciences, data sciences, and technical skills of computer science.

RQ6: What are the main research gaps (i.e., open issues) in the research domain?

On behalf of results, we have observed not many researchers are working in this research area especially with respect to cutting-edge technologies (like artificial intelligence and machine learning). In that aspect, we have found numerous directions which can be carried out for research because the empirical research which already done to handle the post-disaster situation is not sufficient. Most of the proposed solutions in considered studies are based on visual simulations like undirected graphs instead of empirical solutions.

We can claim it's a great opportunity for young researchers to explore this unexplored important research fields with respect to cutting edge technologies like artificial intelligence and machine learning.

A APPENDIX A

In this index, we have enlisted all considered primary studies.

 PS1: [Opricovic and Tzeng 2002b] developed a multicriteria model (The application of this model is illustrated with post-earthquake reconstruction problem in central Taiwan including restoration of "lifeline" system) for analyzing and planning strategies for reducing social and economic cost in the natural disaster area by generating alternatives, establishing criteria, assessment of criteria weight, and application of compromise ranking method (by VIKOR). First Manuscript submitted to ACM

of all, they create alternative reconstruction plans with different scenarios and varying "system Parameters" like s1= location, s2= magnitude, s3= probability s4= number of reallocated settlements, s5= land-use types, s6= development regulation, s7= fiscal policies, s8= construction techniques. The first three parameters are determined from seismic data for the considered area and the rest of all are related to regional planning and designing alternatives. Secondly, they establish eight multicriteria (Reconstruction cost, Gross domestic production, Destroyed houses and parameters, Restoration ability, Sustainability, Acceptability by the local public, Government preferences and plans have to be evaluated on the behalf of all these criteria's). The relative importance of each criteria in Multicriteria Decision Modeling (MCDM) is expressed by weight using the scaling method without losing any meaning which provides help in modeling decision making. "Equal Importance" weight (wi=1/n) when there is no information from the decision-maker. Fuzzy logic is used for the linguistic variable (good, fair, and bad) to develop a mathematical model to implement human logic in engineering solutions. All these linguistic variables play an important role in decision-making. The fuzzy multicriteria model can treat all relevant conflicting effects and impacts in their representative units and the development of fuzzy multicriteria model is important because it deals with incomplete information. The Fuzzy multicriteria optimization (FUMCO) method is developed in this paper which has two phases CFU phase(converting fuzzy data into crisp scores) and MCO phase (multicriteria optimization using compromise ranking method). Linguistic variables converted into crispy numbers like low=0, medium= 0.5 and high= 1 respectively. To avoid conflicts among different criteria's which is very obvious in practical problems they have used a comparison ranking method known as VIKOR which is introduced as an applicable technique to implement within MCDM.

PS2: [Eid and El-Adaway 2018a] develop an innovative decision framework by adopting an agent-based approach for short-term redevelopment objectives and also for balancing long term goals by reducing three-dimensional vulnerabilities of communities like social, economic, and environmental ones. For this purpose, they have used residential agents, economic agents, and state disaster recovery agents (SDRC). SDRC's main purpose is to evaluate the recovery plan and prioritize the objective after every simulation through aggregated equations. The proposed approach is composed of five steps: (i) Implementation of an assessment tool to measure the three considered dimensional vulnerabilities; (ii) Modeling of stakeholders objectives, strategies, and behaviors; (iii) Data gathering to extract the information about the damage of the disaster; (iv) Simulation of the impact of the disaster event and of the interaction the stakeholders have during the post-disaster recovery phase; (v) Analysis of the simulation results. The utmost purpose of this research methodology is to provide optimal recovery strategies after disaster and policies at the community level.

PS3: [Ge et al. 2010a] reviewed disaster management practices in China with an interdisciplinary analysis to check how disaster planning and management can be used efficiently in a top-down government administration system during 2008 Wenchuan Earthquake. Basically two national-level plans were drawn, one is the Overall Plan for Post-Wenchuan Earthquake Recovery and Reconstruction, and the other is the City Town System Plan for Post-Wenchuan Earthquake Recovery and Reconstruction, and the evaluation of plans contents are very helpful for policymakers to build a sustainable infrastructure.

PS4: [Doi et al. 2016] proposed a solution for reconstruction after Great East Japan Earthquake (March 11, 2011). According to this solution in the start, only 2D drawings of roads and other infrastructure were collected from government offices for the construction plan which was very difficult to make consent with local residents and to start the construction plan. For this purpose, they proposed two policies to accelerate the reconstruction plan (i) Build 3D models for public shapes using CAD (Computer-Aided Design) and private shapes using CG (Computer Graphics) for better visualization and then they are integrated into the database (ii) Train human resources that can build for 3D models from 2D drawings of roads, river, rail and so on. In order to evaluate the approach, they did joint research with the city

Manuscript submitted to ACM

planning division of Miyako city. In meanwhile civil engineering related software was also used for 3D modeling like Infrastructure Design Suite (used for planning and visualization), Civil 3D (used for making small objects like sports facilities, parking lots), and ReMake (used for converting photo/laser scanning data into 3D mesh). As a case study in this article, they considered "Kuwagasaki" district of Miyako city. When they used city planning law data of urban planning it was difficult to use because that was in 2D and visually can't be differentiated among different tress e.g "Akinire" and "Yamaboshi" are very rare trees in Japan. For this, they have used JFP a tree generation system (written in eXtensible Plants Modeling Language) to model 3D tree shapes. The author has introduced another efficient way of 3D model of by using reconstruction by using drone came, for realistic and effective 3D models quickly, this method is much faster and efficient as compared to ordinary 3D modeling.

PS5: [Zhou et al. 2009] have proposed a framework by using 3S (Special data Acquisition, Spatial Data Management, and Special Data Management) and remote sensing (RS provide different resolution remote sensing data before and after the earthquake) techniques for post-disaster reconstruction planning system (PRPSS) after Sichuan Wenchuan earthquake (China) in 2008. Both 3S⁸ and RS (remote sensing) techniques belong to Global Information System (GIS). Overall proposed framework (PRPSS) consisted of three layers Data Source Layer (uses spatial databases technology for the management of disaster areas spatial data), Functional Service Layer (provide primary service function related system construction), and System Application Layer (Set of planning support Analysis, provide effective support for reconstruction planning). PRPSS framework has seven types of databases which contain different kinds of disaster area data like (i) Spatial Metadata Database (describe geographic data sets content, expression, spatial reference and further it is divided into basic information and auxiliary information), (ii) The Basic Geographic Database (caries thematic data and consist of planning area 1:250000 and 1:50000 DLG), (iii) DEM Database (contain data which is used for 3D space visualization and 3D spatial analysis), (iv) Remote Sensing Image Database (contain different- resolution remote sensing images such as pre-earthquake and post-earthquake worldview), (v) Geological Disasters Database (contain data related to the earthquake fault zone, landslide) (vi) Social Economy Database (contain data related to the pre-earthquake population of the affected area, GDP and other data) (vii) Planning Results Database (contain plan results related to reconstruction planning). The overall system of PRPSS consisted of four subsystems (i) Spatial Data Management Subsystem (mainly used to manage and maintain databases like DEM database, social economy database), (ii) Disaster Information Extraction Subsystem (Used to extract disaster information using pre-earthquake and post-earthquake remote sensing data) (iii) Planning Support Analysis Subsystem (contain various data analysis tool related to planning business, spatial measurement, spatial data inquiry, map statistical analysis and so on) (iv) 3D Spatial Analysis Subsystem (To plan reconstruction place after analysis by 3D environment).

For the implementation of this system Tsinghua University was responsible for post-disaster reconstruction planning of Aba Tibetan that's why PRPSS constructed rapidly, ESRI's ArcSDE to manage the post-disaster reconstruction planning database. Data was provided free of cost by the State Bureau of Surveying and Mapping, The China Earthquake Administration and Beijing SPOT Company, and others unite. System developed based on component-based GIS technology. 2D GIS functions were developed by ESRI ArcGIS Engine and 3D spatial analysis function developed by Tsinghua TS3DGIS components.

PS6: [An et al. 2016] say's remote sensing technology is playing an important role in collecting information on social infrastructure which is very important for relief and reconstruction after any disaster. With the increasing availability

 $^{^8{\}rm geographic}$ information system (GIS), the remote sensing (RS) and the global positioning system (GPS)

¹⁴⁵⁶ Manuscript submitted to ACM

of remote sensing data, various methods have been developed for damage assessment. In this paper, authors have

proposed another enriched algorithm that allows us to combine GIS data (Geographic Information System which is taken by detailed survey results from Institute of Engineering Mechanics (IEM) and China Earthquake Administration (CEA)) and SAR (Synthetic- Aperture Radar) images to estimate damage assessment after any disaster. The method was applied to PALSAR images taken over both areas Wenchuan (China) and Yushu (China) affected by the earthquake in 2008 and 2010 respectively. According to this method, GIS layer is not only applied for scale restriction but also as ancillary (non-video information such as audio data) data of structure vulnerability. As a case study author has considered the city of Dujiangyan, Sichuan, China affected by the earthquake on May 12, 2008. Two images were taken by ALOSPALSAR sensor on February 5 and June 22, 2008, respectively. And ground truth building damage data provided by the Institute of Engineering Mechanics (IEM) and China Earthquake Administration (CEA) based on the detailed survey result in GIS format.

As it is mentioned this research is related to measuring the damage of building with accuracy. For the city of

As it is mentioned this research is related to measuring the damage of building with accuracy. For the city of Dujiangyan, GIS polygon (five damage level) of a single building contain structure and occupancy information that is accessible. But in this work, five damage levels are simplified into 3 and sorted all buildings of the study area into three types (Class A, B, and C) by applying our GIS data. By measuring the construction of similar structures building damage is more accurate way to calculate the damage. Each GIS polygon contains several kinds of information like the area of a polygon, the mean structure class of the polygon, and Z1 value of all pixels. Overall in this method GIS data participated in two steps of the whole procedure (i) In SAR intensity changes detection as a scale restriction (ii) Provide ancillary data of structure vulnerability for building damage degree estimation Anyhow still there exist a lot of issues in this methodology like GIS data is not always available; secondly, the method we applied for estimation of building damage is not workable in mountain areas as well as we can't determine moderate damage through this proposed method.

PS7: In this paper [Sonobe and Hashiba 2018] have evaluated the restoration situation of a damaged building in the earthquake of 2016 (Kumamoto) in which almost 3000 buildings were completely destroyed, and it was not possible to grasp damage situation information without satellite remote sensing. Furthermore, they have used object-based and pixel-based methods for extracting detail damage of the building and other dwellings as well as to improve the resolution of a satellite image. Generally, a lot of parameters are required for image segmentation and classification by the object-based method but here damage is evaluated by the optical and SAR images observed immediately after the disaster investigated and a lot of damage features of building was investigated by the field surveying. In this paper they have taken Mashiki town as a case study (severe damage in Kumamoto earthquake) for evaluation of proposed methodology, using high-resolution satellite data one year after the earthquake.

PS:8 In this paper [Pan et al. 2012] have discussed the reconstruction approach after the Wenchuan County earthquake in 2008 of Sichuan Province. After three years of post-disaster reconstruction in the disaster area economy, ecology, environment has been fully restored (all this information was collected from the Department of Tourism in Shuimo town). Though achieving such a heavy construction in just three years have shocked the world, on the behalf of this amazing achievement Shami Town in Wecnhuan County was awarded as "Global Best Example Post-Disaster Reconstruction". From studying and discussing the reconstruction model they found that the town used regional advantages, improved infrastructure, explore tourism resources, changed the economic growth mode, and focused on the protection of historical and cultural. Basically, for the whole construction, they have adopted "Partner Assistance" approach, on the other hand, Shuimo town has traditional culture and historical context which is based on two regions "Chanshou Old Street" and "Qiang city in Shuimo town" as well as it contains natural scenery. In this way tourism industry is the support strength of the national economy. In overall reconstruction, they have adopted the following

strategies (i) They have repair old buildings according to their old style, size, and features so they can revive the old style and strengthen the modern technology of resisting the earthquake. (ii) Some buildings which didn't collapse in a disaster such as old houses or shops, left their appearance from outside as it is but inner side structure equipped with modern structure equipment to resist the earthquake up to 9.0 magnitude. (iii) Some buildings did not collapse but their location hampered the design of the city, so they decided to push them down and reconstruct. (iv) Keeping original structure as it is but they brought some other styles of architecture to diversify Qiang Zhai tourism product.

After all state of art post-reconstruction but still, author have few suggestion (i) Secondary disasters caused by an earthquake like debris flow, collapse, landslide have greatly hampered the need to avoid quality reconstruction. (ii) At present, the tourism benefit in shumio town has not shown itself completely. They need to have further refinement about many aspects such as traveling website construction, advertising, the quality of reception etc. (iii) Extend the tourism industrial chain and develop the economy with three-dimensional development direction such as Qiang minority culture, tourism industrial chain.

PS: 9 [Hidayat et al. 2010] describe the role of key stakeholders in project management during post-disaster reconstruction like project financing and design to start the reconstruction. Additionally, they have identified key challenges during post-disaster reconstruction like policies, construction budget/cost, labour cost, coordination, communication, and political environment. In the end, they have explained 10 critical success factors that must be taken into account during post-disaster reconstruction which are: effective institutional arrangement, coordination and collaboration, supportive laws and regulations, effective information management system, competencies of managers and team members, effective consultation with key stakeholders and target beneficiaries, effective communication mechanism, clearly defined goals and commitments by key stakeholders, effective logistic management and sufficient mobilization and disbursement of a resource.

PS:10 In this paper author's [Li and Liu 2011] have proposed a mechanism for the post-earthquake reconstruction of the building to take care of the environment (like natural environment, social environment, economic and cultural environment) and fulfill basic requirements like reconstruction of sites, the planning system, local culture, building, and environment design, physiological reconstructions and establish a good social and cultural environment to improve peoples quality of life. At last, the authors have validated the approach on Wenchuan earthquake reconstruction planning.

PS: 11 In this paper [Mayo et al. 2006] did a comparative analysis of Conventional Master Planning (CMP) practices with the Intelligent Master Planning (IMP) approach (By using a case study of a massive earthquake on 8 October 2005 in Azad Jammu and Kashmir leaving more than three millions people homeless). As most developed countries don't have any mechanism to tackle these kinds of massive disasters. So after successful relief operation government has started work of reconstruction and rehabilitation. So master plan project was assigned to the University of Engineering and Technology Lahore, it was a great challenge because the need of the people was very urgent, and the contemporary planning process was consuming, that's why study required efficient planning groups data collection, and analysis. The new planning approach has been named as "Intelligent Master Planning for Disaster Afflicted Area' and it heavily relied on state-of-the-art remote sensing and GIS technologies, including the use of computer-based data sheets and analytical tools such as MS Excel and SPSS. They have used 14 different assessment criteria (Time Saving, Effective in disaster afflicted difficult areas, Resource mobilization at the start of a project, Involvement of manpower resources, Maps updating and reproduction, Statistical and analytically choices and opportunities, Spatial data analysis, and thematic maps production, Graphics, and illustrative capabilities, Data transfer-ability, Periodic revision of plan and updating facility, Quick and rational decision-making abilities, Degree of public participation, Spatial and statistical data coverage, Manuscript submitted to ACM

Conformity and adaptability with the cutting-edge technologies) on the behalf of all those criteria IMP proved more advantages then CMP. Therefore study propose the adoption of IMP as a modular approach, time-efficient, intelligent, detailed, and disaster sensitive.

 PS: 12 In this paper authors [Goujon and Labreuche 2015] propose a generic decision support model dealing with various sectors (education, housing, and health) that could need after disaster applied through software module to automatically assign a priority value to sets of reconstruction projects in a post-disaster phase. Basically, this article covers damage areas and the priority of reconstruction projects. The objective is to support the decision-makers that are not experts in post-disaster management and that have to take complex decisions related to many parameters: evolution of the disaster effects, population needs in different vital sectors, etc. Multi-Criteria Decision Making process is basically decomposed into Modeling Phase (to construct a decision model that captures the decision-maker preferences) and Exploitation Phase(corresponding to define the priority). They have developed a tool by using Myriad (Multi-Criteria decision tool which contains two sets of criteria weight and interaction and each criteria is evaluated with the value between 0(bad) and 1(good)) which is based on post-disaster methodologies characteristics and consider only high priority sectors like housings, health, education, transportation, energy, water, food, and entertainment. The module first evaluates the relevance of each reconstruction project, and next evaluates the relevance of sets of reconstruction projects taking into account the context and the population needs. It implicitly represents synergies among projects. This approach is implemented in the Destriero project demonstrator to support the prioritization of the reconstruction project after a combination of disasters near Madrid.

PS: 13 In this paper authors [Eid and El-Adaway 2018b] have described that natural disasters affect the built environment's infrastructure and disturb the economic sector's sustainability and welfare. This requires a disaster recovery decision support tool that capitalizes on the redevelopment opportunities to elevate societies to a moresustainable and less-vulnerable status. As such, this paper presents an agent-based model approach that aims to meet the objectives of stakeholders while decreasing the community's economic vulnerability. Agent behavior considered three assumptions which are Agents are interdependent, Agents follow simple rules, Agents are adaptive. Proposed agent-based model represents the residents of the impacted community, the economic sector, insurance companies, and disaster recovery plans. In addition, the model presents Local Disaster Recovery Management (LDRM), State Disaster Recovery Coordinator (SDRC), and Federal Disaster Recovery Coordinator (FDRC). Accordingly, the proposed model adopts a five-step research methodology: (1) implementing a comprehensive economic vulnerability assessment tool; (2) developing the objective functions and learning algorithms of the associated stakeholders; (3) modeling the different attributes and potential strategies of the various stakeholders; (4) creating an interdependent agent-based model that simulates the aforementioned information; and (5) interpreting and analyzing the results generated from the developed model. The model is developed and tested on the post-Katrina residential housing and economic-financial recovery in three Mississippi coastal counties. The model proposed an evolving optimal budget distribution that decreased the economic vulnerability and increased the residential and economic recovery. Ultimately, the holistic framework utilized in this study lays down the foundation for a new generation of interdisciplinary managerial decision-making support

PS: 14 [Bilau et al. 2015] proposes theoretical model for post-disaster planning using regional and local level plans. The suggested model consists of three phases which are enabling phase, reconstruction planning phase, and reconstruction implementation phase. The main focus of this proposed framework is to make effective management during post-disaster housing reconstruction.

PS: 15 In this paper [Goujon and Labreuche 2015] proposed a multi-criteria decision model to take a complex decision in a post-disaster situation to reconstruct the damaged area by considering several parameters like damage level in the affected area (number of damaged houses, schools, hospitals, and transportation), the interconnection between damage buildings and to prioritize reconstruction projects. They have validated this model on fictive examples but later they will do it evaluation on real data.

PS: 16 [Dunford and Li 2011] describe the overall government reconstruction plan after a massive earthquake in Wenchuan in western China. In this reconstruction strategy's poverty of affected people is the main attribute due to this they have given priority to settle rural areas first to facilitate poor people. According to research although some resources were not used for the poor population because resources were allocated on behalf of damage assessment.

PS: 17 [Davidson et al. 2007] have described about community participation in reconstruction planning. According to this approach "where", "why" and "how" users can be involved in the technical design process and decision making where their contribution leads to positive results and outcomes. [Davidson et al. 2007] have validated this approach on four different post-disaster housing reconstruction projects: one in Colombia, one in El Salvador, and two in Turkey.

PS: 18 [Li et al. 2019] describes post-disaster housing reconstruction mechanism and policy implementation in Dujiangyan central city. In this model, multiple entities (like market and social institutions) played a vital role in the economic and early completion of buildings reconstruction. But this paper is just elaborating on conventional methods not taking into account cutting-edge technologies to handle the post-disaster situation.

PS: 19 [Hirayama 2000] describe socio-economic and spatial polarisation framework which is used to recover damaged houses including reconstruction policy which has been defined after Great Hanshin Earthquake in Japan. In this framework, two-tier policy is introduced one is self-help group like people can reconstruct their own houses at market price and the second one is public housing or residential welfare housing directly provided to poor and needy people after reconstruction.

PS: 20 [Nakagawa and Shaw 2004] present social capital role in post-disaster rehabilitation and reconstruction. According to this model people actively participate and deeply involved in reconstruction programs to make a successful and speedy recovery. Additionally, in this reconstruction model, people have the highest satisfaction rate as well rehabilitation speed. This model is successfully validated in Kobe (Japan) and Gujarat (India) earthquakes.

PS: 21 [Chang et al. 2011] proposed a framework for managing resources during post-disaster situations including stakeholders need, legislation and policy for reconstruction, the capacity of the construction industry to rebuild the buildings, enhance the capacity of a transportation network, and incorporating environmental considerations to reconstruct damaged infrastructure and buildings. According to authors [Chang et al. 2011] main motivation behind this framework is the post-Wenchuan earthquake reconstruction process because they have faced a bottleneck to manage resources.

PS: 22 [Johnson 2007] proposes a framework for strategic planning to make temporary houses in a post-disaster situation by considering physical, social, economic, and organizational aspects. For analysis of this framework, six case studies have been considered for temporary housing which is Greece in 1986, Turkey and Colombia in 1999, Japan in 1995, Mexico in 1985, and Italy in 1976.

PS: 23 [Rafi et al. 2016] describes owner-driven reconstruction approach after 2005 Kashmir and 2013 Awaran earthquakes in Pakistan. This approach is based on private housing and become very successful for safe housing and to complete reconstruction in time. But still, there was a delay in some buildings because of participation of different agencies and took time in decision-making and coordination about the reconstruction process.

1613

1614

1615

1616

1617 1618

1619

1620

1621

1622 1623

1624

1626

1627 1628

1629

1630

1631

1632 1633

1634

1635

1636

1637 1638

1639

1640

1641

1642 1643

1644

1645

1646

1647 1648

1649

1652

1653 1654

1655

1656

1657 1658

1659

1660

1661

1662

PS: 24 [Verykokou et al. 2018] proposed methodology by using Unmanned Aerial Vehicles (UAV) for 3D modeling of damage or collapsed buildings for reconstruction. In this method, they have used commercial and open-source tools for 3D modeling and computational time is very fast depending upon the number of damaged infrastructure.

PS: 25 [Tavakkol et al. 2016] have used the entropy method for posy-disaster decision making in the proposed framework to define prioritization strategy about damaged bridges or buildings on behalf of available data. They applied the proposed framework to Nisqually earthquake.

PS: 26 According to [He and Zhou 2013] post-disaster reconstruction process after 5.12 Wenchuan earthquake was really difficult, complex, and time taking. In their research, they took public opinions during the reconstruction process to consider their social benefits.

PS: 27 [Pezzica et al. 2019] introduced a framework where they have proposed the use of collaborative photogrammetry to involve disaster-affected people during the planning and reconstruction process. They have validated this approach in sample small data set by a group of citizen-scientists after the 2016 Central Italy earthquake. **PS: 28** [Zhang et al. 2010] have proposed an optimization model by using Bean Optimization Algorithm (BOA) based on fuzzy preference relation. According to this model in a post-disaster situation reconstruction of public services will get priority. The proposed model is validated post-earthquake reconstruction in China.

PS: 29 [Zhou et al. 2009] proposed framework called post-disaster reconstruction planning supporting system (PRPSS) to reconstruct damaged buildings supporting system by using 3S technique planning for information extraction of the damaged area, assessment of damage cost, reconstruction planning, and so on.

PS: 30 [Akbari et al. 2021] proposed an innovative polynomial-time online algorithm for road reconstruction in a post-disaster situation because roads play a vital role to evacuate people and reconstructing damaged buildings. Additionally, they [Akbari et al. 2021] have checked the performance of the proposed algorithm with others on Istanbul road network and show its performance is much superior to others.

PS: 31 [Liu et al. 2021] have proposed reinforcement measures and suggestions during post-disaster reconstruction after the M8.1 earthquake happened near Pokhara, Nepal. They have used finite element software for reconstruction modeling. Additionally, they have considered transmission path of structure, stiffness, consistency of structure, and site selection.

PS: 32 [Messaoudi and Nawari 2020] proposed a BIM-based post-disaster reconstruction framework called Virtual Permitting Framework (VPF) to improve the quality and to recover damage assets. VPF consisted of five components which are: (i) Buildings inspection and damage assessment (ii) classification of damages into different groups (iii) database of damaged buildings (storage) (iv) reconstruction type with local state regulation (v) virtual permitting (vi) decision about approval/rejection of construction unit. The proposed framework was successfully validated on the city of Gainesville data set.

PS: 33 [Bilau et al. 2018] present a methodical framework for effective management and for reconstruction of buildings in post-disaster situation. Key attributes in the proposed framework are effective management during reconstruction, consideration of affected communities, and involvement of all key stakeholders to take input for the reconstruction plan.

PS: 34 [Li and Liu 2011] present an approach for residential environment planning by considering reconstruction site, planning of the system, maintaining local culture, building design, psychological reconstruction, and keeping intact social and cultural environment for establishing a good quality of life of local residents.

PS: 35 [Xin et al. 2010] present an approach that is based on a collection of information like the design before reconstruction, required stiffness of walls which is increased by using cement, technical regulation for reconstruction are considered.

PS: 36 [Pan et al. 2012] have described the "hematopoietic type" post-disaster reconstruction model which is used in Wenchuan County in Longmen mountain of Sichuan province. In this model, key attributes are infrastructure improvement, education, environment. economic growth, and protection of historical and cultural aspects.

PS: 37 [Yi-lin and Jin-e 2010] present CM-agent model approach is used to solve construction management problem in post-disaster situation. Additionally, this model has the capability to work on "sound and rapid" (without any influence of other stakeholders) construction requirements, can solve public project management problems, and to make ensure the execution of public projects successfully in post-disaster reconstruction.

PS: 38 The approach proposed by [Feng et al. [n. d.]] for post-disaster reconstruction in Lueyang county based on analyses of rebuilding houses layout and reconstructing low-cost and affordable houses on a priority basis.

PS: 39 [Li and Meng 2011] present an approach that gives the accurate design of rural housing reconstruction with respect to a lifestyle of residential users. Additionally, housing reconstruction becomes a source of economic revelry including ecological and energy-saving technique for making an economical residence.

PS: 40 [Doi et al. 2016] proposed an approach to speed up reconstruction in at Sanriku coast areas that were affected by Great East Japan Earthquake. They have followed two policies in this model, first one is 3D model to visualize reconstruction plans and the second one is to train the local people that can build 3D models for reconstruction plans by considering all basic entities s like roads, bridges, railways, and buildings.

PS: 41 [Sonobe and Hashiba 2018] have proposed an approach to reconstruct damaged buildings after one year of 2016 Kumamoto earthquake after gathering information with the help of high-resolution satellite data of Worldview-3. They have used Gray-Level Co-occurrence Matrix (GLCM) for calculation of texture index, and analysis shows there is too much difference with respect to building damage level and recovery situation.

PS: 42 [Ge et al. 2010b] reviews post-disaster management strategies for the analysis and management by using a top-down approach after 2008 Wenchuan Earthquake. For this purpose, they have used two different plans which are "Overall Plan for Post-Wenchuan Earthquake Recovery" and "Reconstruction and the City/I-own System Plan for Post-Wenchuan Earthquake Recovery and Reconstruction" by considering different strategies to make reconstruction plan on behalf of available resources and funds.

PS: 43 [Zamanifar et al. 2014] proposed an approach for reconstruction of roads including estimation of repairing cost on behalf of total damage area in a post-disaster situation. In this approach, they also consider bridges, tunnels, and pavements as a part of roads reconstruction. Additionally, they [Zamanifar et al. 2014] also describe rehabilitation duration for reconstruction with cost.

PS: 44 [Liu et al. 2014] proposed framework for post-earthquake reconstruction which claims proper institutional arrangements can make reconstruction and recovery process fast. They justified their claim with Weizhou Town reconstruction which is consisted of both long-term and short-term reconstruction of a public building with public facilities. Additionally, this approach is a much better top-down approach and rapid reconstruction process.

PS: 45 [Cao and Xiao 2011] proposed a mechanism for post-disaster reconstruction based on index system to restore the living and to reconstruct damaged buildings and other facilities. They [Cao and Xiao 2011] have used the quintile grading method to improve the accuracy of the model by using DIDF method. Validation of this approach is done by empirical analysis of China's 31 provinces.

PS: 46 [Ghannad et al. 2020] proposed a post-disaster recovery model to define the priority of reconstruction plans of damage projects/facilities on behalf of socioeconomic factors of affected communities with minimum time and cost. They have used AHP (Analytical Hierarchy Process) for decision making, and an optimization model for resource allocation. For evaluation, they have applied this model on counties (called parishes) data. In [Ghannad et al. 2020] they didn't consider damage physical dependencies among reconstruction units and their priority to reconstruct but our model explicitly considering.

PS: 47 [Rodriguez Coca 2020] proposed a model for the reconstruction of roads and removing debris in a post-disaster situation. They have used two-stage methodology Steiner Tree Model (to check roads that need to be reconstructed first) and Scheduling Algorithm (Scheduling for restoring roads and crews assignment). For verification, they applied this technique on 1994 Northridge California Earthquake data.

PS: 48 [Mejri et al. 2017] proposed an innovative approach for the dynamic evolution of disasters to assess post-damage facilities to help planners for making the right decision on behalf of available information. They have used web-based technologies for collection and analysis of damage territory data. For validation of this approach, they have used Tacloban city data in the Philippines which was affected by Super Typhoon Haiyan in November 2013.

PS: 49 [Ghannad et al. 2019] present an approach to prioritize damage facilities on behalf of social and economic benefits including resource allocation for reconstruction in a post-disaster situation. They have validated this model with the help of different tools like Federal Emergency Management Agency and GIS.

PS: 50 [Lyons et al. 2010] proposed a framework for post-disaster reconstruction called "Building Back Better" which considers five different attributes before starting reconstruction of any damaged unit. Those attributes are financial/economic, social, organizational, and environmental.

PS: 51 [Vahanvati and Mulligan 2017] proposed an approach for reconstruction planning which is consisted of four steps: (i) use 'agile approach for planning and implementation (ii) specific time for gaining community trust (iii) usage of technologies, expert labor and quality material for hazard-safety housing (iv) capacity building of community until reconstruction work complete. Authors have validated this approach [Vahanvati and Mulligan 2017] on four different case studies.

PS: 52 [Mudassir and Di Marco 2021] proposed an approach for post-earthquake reconstruction planning by using DDQN reinforcement learning algorithm. In this approach, they have considered all compulsory attributes like social benefits of affected people, political priority, time, and cost to reconstruct damaged buildings and roads. They have validated the approach by applying it to L'Aquila city which was affected by the earthquake in 2009.

PS: 53 [Xiao et al. 2023] proposed an approach in which they presents a robotic crane system using Proximal Policy Optimization (PPO), a reinforcement learning algorithm, to automate construction material transport after earthquakes. Two models are trained—one with obstacle awareness and one without—and tested in simulated tasks. The obstacle-aware model outperforms the other in safety, efficiency, and path planning. While effective in simulations, further validation in real-world scenarios and comparison with other RL methods are needed.

B APPENDIX B

Table 14. Primary studies distribution according to publication resources

Pub. Venue	Type	Res. Topic	No	Ref
Computer-Aided civil and infras-	Journal	Reconstruction Modelling by us-	1	PS1
tructure engineering		ing Software		
SIGSPATIAL International Confer-	Conference	Entropy method	1	PS25
ence on Advances in Geographic				
International Conference on Re-	Conference	Reinforcement Learning	1	PS52
search Challenges in Information				
Science				
Disasters, Crisis, Hazards, Emergen-	Journal	Management Experts	1	PS14
cies and Sustainable Development				
International Conference on Me-	Conference	Civil Engineer	1	PS35
chanic Automation and Control En-				
gineering				
International journal of disaster risk	Journal	Data Sciences	1	PS48
reduction				

Pub. Venue	Type	Res. Topic	No	Ref
Journal of Infrastructure Systems	Journal	Agent Technology	1	PS2
International Journal of Disaster	Journal	Data Analytics	1	PS3
Risk Science				
International Conference on	Conference	Computer Aided Design	1	PS4
Network-Based Information Sys-				
tems (NBiS)				
IEEE International Geoscience and	Symposium	Global Information System	1	PS5
Remote Sensing Symposium				
International Geoscience and Re-	Symposium	Geographic Information System	1	PS6
mote Sensing Symposium				
IEEE International Geo science and	Symposium	Pixel-based method	1	PS7
Remote Sensing Symposium				
International Conference on Man-	Conference	Social Sciences	1	PS8
agement Science and Engineering				
International Conference on Infor-	Conference	Social Sciences Discrete Analysis	3	PS10
mation Systems for Crisis Response		Social Sciences		PS45
and Management				PS34
International Conference on Ad-	Conference	Intelligent Master Planning	1	PS11
vances in Space Technologies				
International Conference on Infor-	Conference	Myriad Experts	1	PS12
mation and Communication Tech-				
nologies for Disaster Management				
International Journal of Disaster	Journal	Data Sciences	1	PS32
Risk Reduction				
International CIPA Symposium	Symposium	Photogrammetry	1	PS27
Nepal Engineer's Association Tech-	Journal	Social Sciences	1	PS23
nical Journal				
Applied Mechanics and Materials	Journal	Social Sciences	1	PS9
Journal of infrastructure systems	Journal	Agent Technology	1	PS13
Applied Geography	Journal	Social Sciences	1	PS16

Pub. Venue	Type	Res. Topic	No	Ref
Habitat international	Journal	Social Sciences, Social and Eco-	2	PS1
		nomic Experts		PS4
Progress in Disaster Science	Journal	Social and Economic Experts	1	PS18
Housing Studies	Journal	Social and Economic Experts	1	PS19
International Journal of Mass Emer-	Journal	Social and Economic Experts	1	PS2
gencies and Disasters				
Disasters	Journal	Management experts, Social and	2	PS2
		Economic Experts		PS2
Multimedia tools and applications	Journal	Unmanned Aerial Vehicles	1	PS2
International Conference on Com-	Conference	Data Analytics	1	PS3
puter Sciences and Convergence In-				
formation Technology				
International Conference on Elec-	Conference	Social and Economic Experts	1	PS3
tric Technology and Civil Engineer-				
ing				
International Conference on	Conference	Modelling by using software	1	PS4
Network-Based Information Sys-				
tems				
IEEE International Geo science and	Symposium	Gray-Level Co-occurrence Matrix	1	PS4
Remote Sensing Symposium				
Practical Action Publishing	Book Chapter	Social and Economic Experts	1	PS5
Applied Mechanics and Materials	Journal	Social Sciences	1	PS2
Procedia engineering	Journal	Management Experts	1	PS3
International Conference on Man-	Conference	Data Sciences	1	PS3
agement Science and Engineering				
Transportation Research Part B:	Journal	Transportation Research	1	PS3
Methodological				
Structures	Journal	Reconstruction Modelling by us-	1	PS3
		ing Software		

Pub. Venue	Type	Res. Topic	No	Ref
International Journal of Disaster	Journal	Social and Economic Experts	1	PS42
Risk Science				
International Journal of Transporta-	Journal	Social and Economic Experts	1	PS43
tion Engineering				
Journal of Management in Engineer-	Journal	Analytical Hierarchy Process	1	PS46
ing				
Operations Research	Journal	Steiner Tree Model and Schedul-	1	PS47
		ing Algorithm		
International Conference on Logis-	Conference	Agent Technology	1	PS37
tics Systems and Intelligent Manage-				
ment				
International Journal of Project	Journal	Data Sciences	1	PS51
Management				
IEEE Youth conference on informa-	Conference	Fuzzy Relations	1	PS28
tion, computing and telecommuni-				
cations				
IEEE International Geo science and	Symposium	3S Planning Technique	1	PS29
Remote Sensing Symposium				
International Conference on Infor-	Conference	Decision Model	1	PS15
mation and Communication Tech-				
nologies for Disaster Management				
Computing in Civil Engineering	Conference	Modelling by using software	1	PS49
2019:Smart Cities, Sustainability,				
and Resilience				
Pacific Conference on Earthquake	Conference	Data Science	1	PS53
Engineering 2023				

REFERENCES

Richard J Adams, Palie Smart, and Anne Sigismund Huff. 2017. Shades of grey: guidelines for working with the grey literature in systematic reviews for management and organizational studies. *International Journal of Management Reviews* 19, 4 (2017), 432–454.

Vahid Akbari, Davood Shiri, and F Sibel Salman. 2021. An online optimization approach to post-disaster road restoration. Transportation Research Part B: Methodological 150 (2021), 1–25.

- D Alexander. 2006. From rubble to monument revisited: Modernised perspectives on recovery from disaster. In *Post-disaster reconstruction: Meeting stakeholder interests*. Firenze University Press.
- L. An, J. Zhang, L. Gong, and Q. Li. 2016. Integration of SAR image and vulnerability data for building damage degree estimation. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 4263–4266. https://doi.org/10.1109/IGARSS.2016.7730111
- Michael Berlemann and Max Friedrich Steinhardt. 2017. Climate change, natural disasters, and migration—a survey of the empirical evidence. CESifo Economic Studies 63, 4 (2017), 353–385.
- Abdulquadri Ade Bilau, Emlyn Witt, and Irene Lill. 2015. A framework for managing post-disaster housing reconstruction. *Procedia Economics and Finance* 21 (2015), 313–320.
- Abdulquadri Ade Bilau, Emlyn Witt, and Irene Lill. 2018. Research methodology for the development of a framework for managing post-disaster housing reconstruction. *Procedia engineering* 212 (2018), 598–605.

Caroline Birkle, David A. Pendlebury, Joshua Schnell, and Jonathan Adams. 2020. Web of Science as a data source for research on scientific and scholarly activity. *Quantitative Science Studies* 1, 1 (02 2020), 363–376. https://doi.org/10.1162/qss_a_00018 arXiv:https://direct.mit.edu/qss/article-pdf/1/1/363/1760864/qss_a_00018.pdf

- Pearl Brereton, Barbara A Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from applying the systematic literature review process within the software engineering domain. *Journal of systems and software* 80, 4 (2007), 571–583.
 - Judy F Burnham. 2006. Scopus database: a review. Biomedical digital libraries 3, 1 (2006), 1-8.

2034

2058

2068

2069

2072

- Donald Thomas Campbell. 1963. Experimental and quasi-experimental designs for research on teaching. *Handbook of research on teaching* 5 (1963), 171–246.
- Wei Cao and Hao Xiao. 2011. Establishment and application of comprehensive evaluation system for the ability of post-disaster recovery and reconstruction.
 In Proceedings of International Conference on Information Systems for Crisis Response and Management (ISCRAM). IEEE, 403–408.
- Stephanie E Chang and Nobuoto Nojima. 2001. Measuring post-disaster transportation system performance: the 1995 Kobe earthquake in comparative perspective. *Transportation research part A: policy and practice* 35, 6 (2001), 475–494.
- Yan Chang, Suzanne Wilkinson, David Brunsdon, Erica Seville, and Regan Potangaroa. 2011. An integrated approach: managing resources for post-disaster reconstruction. *Disasters* 35, 4 (2011), 739–765.
- 2042 Muhammad T Chaudhary and Awais Piracha. 2021. Natural disasters—origins, impacts, management. Encyclopedia 1, 4 (2021), 1101–1131.
- Diana Contreras, Thomas Blaschke, Stefan Kienberger, and Peter Zeil. 2014. Myths and realities about the recovery of L×3Aquila after the earthquake.

 International Journal of Disaster Risk Reduction 8 (2014), 125 142. https://doi.org/10.1016/j.ijdrr.2014.02.001
 - UNDRR CRED. [n. d.]. Human cost of disasters: an overview of the last 20 years 2000-2019, 2020.
- Daniela S Cruzes and Tore Dybå. 2010. Synthesizing evidence in software engineering research. In *Proceedings of the 2010 ACM-IEEE International*Symposium on Empirical Software Engineering and Measurement. 1–10.
- Colin H Davidson, Cassidy Johnson, Gonzalo Lizarralde, Nese Dikmen, and Alicia Sliwinski. 2007. Truths and myths about community participation in post-disaster housing projects. *Habitat international* 31, 1 (2007), 100–115.
- Akio Doi, Kenji Oshida, Y Takashima, Kenji Sakakibara, and Tomoya Itoh. 2016. 3d modeling of reconstruction plan at sanriku coast for great east japan earthquake: Visualization of the reconstruction plan for effective information sharing. In 2016 19th International Conference on Network-Based Information Systems (NBiS). IEEE. 397–400.
- A. Doi, K. Oshida, Y. Takashima, K. Sakakibara, and T. Itoh. 2016. 3D Modeling of Reconstruction Plan at Sanriku Coast for Great East Japan Earthquake:

 Visualization of the Reconstruction Plan for Effective Information Sharing. In 2016 19th International Conference on Network-Based Information Systems

 (NBiS). 397–400. https://doi.org/10.1109/NBiS.2016.61
- Michael Dunford and Li Li. 2011. Earthquake reconstruction in Wenchuan: Assessing the state overall plan and addressing the 'forgotten phase'. Applied Geography 31, 3 (2011), 998–1009.
- Vinicius HS Durelli, Rafael S Durelli, Simone S Borges, Andre T Endo, Marcelo M Eler, Diego RC Dias, and Marcelo P Guimarães. 2019. Machine learning applied to software testing: A systematic mapping study. *IEEE Transactions on Reliability* 68, 3 (2019), 1189–1212.
 - Barry Eichengreen. 2007. The real exchange rate and economic growth. Social and Economic Studies (2007), 7-20.
- M.S. Eid and I.H. El-Adaway. 2018a. Decision-making framework for holistic sustainable disaster recovery: Agent-based approach for decreasing vulnerabilities of the associated communities. *Journal of Infrastructure Systems* 24, 3 (2018). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000427 cited By 4.
- Mohamed S Eid and Islam H El-Adaway. 2018b. Decision-making framework for holistic sustainable disaster recovery: Agent-based approach for decreasing vulnerabilities of the associated communities. *Journal of infrastructure systems* 24, 3 (2018), 04018009.
 - Souheil El-Masri and Graham Tipple. 2002. Natural disaster, mitigation and sustainability: the case of developing countries. *International planning studies* 7, 2 (2002), 157–175.
 - Xudong Fan, Xijin Zhang, Xiaowei, and Xiong Yu. 2023. A Deep Reinforcement Learning Model for Resilient Road Network Recovery Under Earthquake or Flooding Hazards. Journal of Infrastructure Systems 29, 4 (2023), 04023072. https://doi.org/10.1186/s43065-023-00072-x
 - Lan Feng, Mo Zhongming, and Gao Liqi. [n. d.]. The housing post-disaster reconstruction layout research of Lueyang county after the May 12th earthquake. In 5th International Conference on Computer Sciences and Convergence Information Technology. IEEE, 794–797.
 - Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical methods for rates and proportions. john wiley & sons.
- Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2019. Guidelines for including grey literature and conducting multivocal literature reviews in software engineering. *Information and Software Technology* 106 (2019), 101–121.
 - Yue Ge, Yongtao Gu, and Wugong Deng. 2010a. Evaluating china's national post-disaster plans: The 2008 Wenchuan Earthquake's recovery and reconstruction planning. International Journal of Disaster Risk Science 1, 2 (01 Sep 2010), 17–27. https://doi.org/10.3974/j.issn.2095-0055.2010.02.003
- Yue Ge, Yongtao Gu, and Wugong Deng. 2010b. Evaluating China's national post-disaster plans: The 2008 Wenchuan earthquake's recovery and reconstruction planning. *International Journal of Disaster Risk Science* 1, 2 (2010), 17–27.
- Pedram Ghannad, Yong-Cheol Lee, Carol Friedland, and Eunhwa Yang. 2019. Optimizing the socioeconomic benefit of post-disaster strategies by prioritizing reconstruction of damaged facilities. In Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience. American Society of Civil Engineers Reston. VA. 180–187.
- Pedram Ghannad, Yong-Cheol Lee, Carol J Friedland, Jin Ouk Choi, and Eunhwa Yang. 2020. Multiobjective optimization of postdisaster reconstruction processes for ensuring long-term socioeconomic benefits. *Journal of Management in Engineering* 36, 4 (2020), 04020038.
- Manuscript submitted to ACM

2090

2091

2092

2103

2104

2110

2111

2112

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2128

2129

- B. Goujon and C. Labreuche. 2015. Use of a multi-criteria decision support tool to prioritize reconstruction projects in a post-disaster phase. In 2015 2nd 2082 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM). 200-206. https://doi.org/10.1109/ICT-
- Bénédicte Goujon and Christophe Labreuche. 2015. Use of a multi-criteria decision support tool to prioritize reconstruction projects in a post-disaster phase. In 2015 2nd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM). IEEE, 200-206.
 - Debarati Guha-Sapir, David Hargitt, and Philippe Hoyois. 2004. Thirty years of natural disasters 1974-2003: The numbers. Presses univ. de Louvain.
- Debby Guha-Sapir, Femke Vos, Regina Below, and Sylvain Ponserre. 2012. Annual disaster statistical review 2011: the numbers and trends. (2012).
 - Min He and Bo Zhou. 2013. Reflections on Livelihood Issue in Post-Disaster Reconstruction Planning of Wenchuan Earthquake. In Applied Mechanics and Materials, Vol. 253. Trans Tech Publ, 233-243.
 - Benny Hidayat, Charles Egbu, et al. 2010. A literature review of the role of project management in post-disaster reconstruction. In Procs 26th Annual ARCOM Conference. 1269-1278.
 - Yosuke Hirayama, 2000. Collapse and reconstruction: Housing recovery policy in Kobe after the Hanshin Great Earthquake, Housing Studies 15, 1 (2000). 111-128.
 - Martin Host and Per Runeson. 2007. Checklists for software engineering case study research. In First international symposium on empirical software engineering and measurement (ESEM 2007). IEEE, 479-481.
 - Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: database searches vs. backward snowballing. In Proceedings of the 2012 ACM-IEEE international symposium on empirical software engineering and measurement. IEEE, 29-38.
- Abhas K Jha. 2010. Safer homes, stronger communities: a handbook for reconstructing after natural disasters. World Bank Publications.
- Cassidy Johnson. 2007. Strategic planning for post-disaster temporary housing. Disasters 31, 4 (2007), 435-458.
 - Matthew G Karlaftis, Konstantinos L Kepaptsoglou, and Sergios Lambropoulos. 2007. Fund allocation for transportation network recovery following $natural\ disasters.\ \textit{Journal\ of\ Urban\ Planning\ and\ Development\ 133,\ 1\ (2007),\ 82-89.}$
- Zenun Kastrati, Fisnik Dalipi, Ali Shariq Imran, Krenare Pireva Nuci, and Mudasir Ahmad Wani. 2021. Sentiment Analysis of Students' Feedback with 2101 NLP and Deep Learning: A Systematic Mapping Study. Applied Sciences 11, 9 (2021), 3986.
- 2102 Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews in software engineering. Technical Report. Citeseer.
 - Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Systematic literature reviews in software engineering-a systematic literature review. Information and software technology 51, 1 (2009), 7-15.
- 2105 Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software engineering. (2007).
- 2106 Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. 2015. Evidence-based software engineering and systematic reviews. Vol. 4. CRC press.
- Christophe Labreuche and Fabien Le Huédé. 2005. MIRIAD: a tool suite for MCDA.. In EUSFLAT Conf. 204-209. 2107
- Qin Li and Hai Meng. 2011. Thinking of the permanent rural residence's design about the post-Wenchuan's earthquake. In 2011 International Conference 2108 on Electric Technology and Civil Engineering (ICETCE). IEEE, 1813-1817. 2109
 - Qiushan Li, Kabilijiang Umaier, and Osamu Koide. 2019. Research on post-Wenchuan earthquake recovery and reconstruction implementation: A case study of housing reconstruction of Dujiangyan city. Progress in Disaster Science 4 (2019), 100041.
 - Z. Li and F. Liu. 2011. Research on residential environment planning and design in the post-earthquake reconstruction. In Proceedings of International Conference on Information Systems for Crisis Response and Management (ISCRAM). 534-537. https://doi.org/10.1109/ISCRAM.2011.6184053
 - Zhen Li and Fang Liu. 2011. Research on residential environment planning and design in the post-earthquake reconstruction. In Proceedings of International Conference on Information Systems for Crisis Response and Management (ISCRAM). IEEE, 534-537.
 - Michael K Lindell. 2013. Recovery and reconstruction after disaster. Encyclopedia of natural hazards 8 (2013), 12-824.
 - Chengging Liu, Dengjia Fang, and Lijie Zhao, 2021. Reflection on earthquake damage of buildings in 2015 Nepal earthquake and seismic measures for post-earthquake reconstruction. In Structures, Vol. 30. Elsevier, 647-658.
 - Lixiong Liu, Yanliu Lin, and Shifu Wang. 2014. Urban design for post-earthquake reconstruction: A case study of Wenchuan County, China. Habitat International 41 (2014), 290-299.
 - Michal Lyons, Theo Schilderman, and Camillo Boano. 2010. Building Back Better: Delivering people-centered housing reconstruction at scale. Practical Action, London South Bank University & International Federation of
 - S. M. Mayo, S. S. Zaidi, and M. Hussain. 2006. Assessing Potentials of RS and GIS based Intelligent Master Planning Approach against Conventional Master Planning Practices for Disaster Afflicted Difficult Areas: A Case Study of Bagh Town, Azad Jammu and Kashmir. In 2006 International Conference on Advances in Space Technologies. 108-112. https://doi.org/10.1109/ICAST.2006.313808
 - Oueidane Meiri, Scira Menoni, Kyla Matias, and Negar Aminoltaheri. 2017. Crisis information to support spatial planning in post disaster recovery. International journal of disaster risk reduction 22 (2017), 46-61.
 - Mouloud Messaoudi and Nawari O Nawari. 2020. BIM-based Virtual Permitting Framework (VPF) for post-disaster recovery and rebuilding in the state of Florida. International Journal of Disaster Risk Reduction 42 (2020), 101349.
 - Ifiok Mfon and Ogundele Olurotimi. 2023. Post-Disaster Reconstruction: Discussing Strategies and Approaches for Rebuilding and Designing Resilient Communities after Natural or Human- Made Disasters. International Journal of Research Publication and Reviews 4 (08 2023), 945-952.
 - DeMond S Miller and Jason David Rivera. 2010. Community disaster recovery and resiliency: Exploring global opportunities and challenges. CRC Press.
- David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G Altman, Prisma Group, et al. 2010. Preferred reporting items for systematic reviews and 2131 meta-analyses: the PRISMA statement. International journal of surgery 8, 5 (2010), 336-341. 2132

- 2133 Ghulam Mudassir. 2022. Reinforcement Learning And Social Based Approach to Post-disaster Reconstruction Planning. (2022).
- Ghulam Mudassir and Antinisca Di Marco. 2021. Social-based City Reconstruction Planning in case of natural disasters: a Reinforcement Learning
 Approach. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 493–503.
- 2136 Ghulam Mudassir, Antinisca Di Marco, and Lorenza Pasquini. [n. d.]. City Reconstruction Planner with Social Perspective. ([n. d.]).
- Ghulam Mudassir, Antinisca Di Marco, and Giordano d'Aloisio. 2025. REPAIR approach for social-based city reconstruction planning in case of natural disasters. *Big Data Analytics* (2025). https://doi.org/10.1007/s41060-025-00829-5
- Shingo Nagamatsu and Haruo Hayashi. 2012. Economic recovery scenario planning for a Tokyo inland earthquake. *Journal of Disaster Research* 7, 2 (2012), 203–214.
- Yuko Nakagawa and Rajib Shaw. 2004. Social capital: A missing link to disaster recovery. *International Journal of Mass Emergencies and Disasters* 22, 1 (2004), 5–34.
- Robert B Olshansky, Laurie A Johnson, and Kenneth C Topping. 2006. Rebuilding communities following disaster: Lessons from Kobe and Los Angeles.

 Built Environment 32, 4 (2006), 354–374.
- 2144 Serafim Opricovic and Gwo-Hshiung Tzeng. 2002a. Multicriteria Planning of Post-Earthquake Sustainable Reconstruction.
 - Serafim Opricovic and Gwo-Hshiung Tzeng. 2002b. Multicriteria Planning of Post-Earthquake Sustainable Reconstruction.
- A. Pan, L. Hu, and J. Qin. 2012. Research on model of post-disaster reconstruction in small towns of Wenchuan, China—A Case of Shuimo Town in

 Wenchuan County. In 2012 International Conference on Management Science Engineering 19th Annual Conference Proceedings. 1853–1858. https://doi.org/10.1109/ICMSE.2012.6414424
- An Pan, Li-hui Hu, and Jian-xiong Qin. 2012. Research on model of post-disaster reconstruction in small towns of Wenchuan, China—A Case of Shuimo Town in Wenchuan County. In 2012 International Conference on Management Science & Engineering 19th Annual Conference Proceedings. IEEE, 1853—1858.
- Kai Petersen and Nauman Bin Ali. 2011. Identifying strategies for study selection in systematic reviews and maps. In 2011 International Symposium on
 Empirical Software Engineering and Measurement. IEEE, 351–354.
- Kai Petersen and Cigdem Gencel. 2013. Worldviews, research methods, and their relationship to validity in empirical software engineering research. In
 2013 joint conference of the 23rd international workshop on software measurement and the 8th international conference on software process and product
 measurement. IEEE, 81–89.
- Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software engineering: An update.

 Information and Software Technology 64 (2015), 1–18.
- John S Petterson, Laura D Stanley, Edward Glazier, and James Philipp. 2006. A preliminary assessment of social and economic impacts associated with Hurricane Katrina. *American Anthropologist* 108, 4 (2006), 643–670.
- Mark Petticrew and Helen Roberts. 2008. Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
- Camilla Pezzica, Andrea Piemonte, Clarice Bleil De Souza, and Valerio Cutini. 2019. Photogrammetry as a participatory recovery tool after disasters: a grounded framework for future guidelines. (2019).
- United Nations Development Programme. 2008 (accessed Jan, 2019). UNDP Policy on Early Recovery. https://www.undp.org/content/dam/undp/library/crisis%20prevention/undp-cpr-policy-brief-early-recovery-2008-08-22.pdf
- Foster Provost and Tom Fawcett. 2013. Data science and its relationship to big data and data-driven decision making. Big data 1, 1 (2013), 51–59.
- Muhammad Masood Rafi, Sarosh Hashmat Lodi, Sohail Bashir, and Aziz Jamali. 2016. Pakistan's experience with post-earthquake reconstruction and rehabilitation. Nepal Engineer's Association Technical Journal (2016), 116–120.
- Yoram Reich. 1997. Machine learning techniques for civil engineering problems. Computer-Aided Civil and Infrastructure Engineering 12, 4 (1997), 295–310.
- Diana Mercedes Rodriguez Coca. 2020. Methodology for planning reconstruction activities after a disaster considering interdependencies and priorities. Ph. D. Dissertation.
 - Ozair Saleem and Seemab Latif. 2012. Information extraction from research papers by data integration and data validation from multiple header extraction sources. In *Proceedings of the World Congress on Engineering and Computer Science*, Vol. 1. 177–180.
 - David V Simunovich. 2008. The quiet of dissolution: post-disaster redevelopment and status-preserving compensation. Seton Hall L. Rev. 38 (2008), 331.
- M Song, J Liu, D Xia, H Yao, G Tian, X Chen, Y Liu, Y Jiang, and Z Li. 2021. Assessment of intraoperative use of indocyanine green fluorescence imaging on the incidence of anastomotic leakage after rectal cancer surgery: a PRISMA-compliant systematic review and meta-analysis. *Techniques in Coloproctology* 25, 1 (2021), 49–58.
- M. Sonobe and H. Hashiba. 2018. Characteristics of the Distribution of Textures in the Reconstruction of Damaged Buildings in the Kumamoto Earthquake.

 In IGARSS 2018 2018 IEEE International Geoscience and Remote Sensing Symposium. 7289–7292. https://doi.org/10.1109/IGARSS.2018.8518923
- Masashi Sonobe and Hideki Hashiba. 2018. Characteristics of the Distribution of Textures in the Reconstruction of Damaged Buildings in the Kumamoto Earthquake. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 7289–7292.
- S. Tavakkol, H. To, S. H. Kim, P. Lynett, and C. Shahabi. 2016. An Entropy-based Framework for Efficient Post-disaster Assessment Based on Crowdsourced
 Data. In Proceedings of the Second ACM SIGSPATIALInternational Workshop on the Use of GIS in Emergency Management (Burlingame, California)
 (EM-GIS '16). ACM, New York, NY, USA, Article 13, 8 pages. https://doi.org/10.1145/3017611.3017624
- J Tyndall. 2018. The AACODS Checklist is Designed to Enable Evaluation and Critical Appraisal of Grey Literature: Flinders University; 2010.
- Wmo Unisdr. 2012. Disaster risk and resilience. Thematic think piece, UN system task force on the post-2015 UN development agenda (2012).
- 2184 Manuscript submitted to ACM

2145

- United Nations Office for Disaster Risk Reduction (UNDRR). 2021. The Human Cost of Disasters: An Overview of the Last 20 Years. https://www.undrr.org/media/106862. Center for Research on the Epidemiology of Disasters report.
- Mittul Vahanvati and Martin Mulligan. 2017. A new model for effective post-disaster housing reconstruction: Lessons from Gujarat and Bihar in India.

 International Journal of Project Management 35, 5 (2017), 802–817.
 - Styliani Verykokou, Charalabos Ioannidis, George Athanasiou, Nikolaos Doulamis, and Angelos Amditis. 2018. 3D reconstruction of disaster scenes for urban search and rescue. Multimedia tools and applications 77, 8 (2018), 9691–9717.
 - Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2006. Requirements engineering paper classification and evaluation criteria: a proposal and a discussion. Requirements engineering 11, 1 (2006), 102–107.
 - Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In *Proceedings of the 18th international conference on evaluation and assessment in software engineering*. 1–10.
 - Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in software engineering. Springer Science & Business Media.
 - Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie Engström, Ivan do Carmo Machado, and Eduardo Santana De Almeida. 2013. On the reliability of mapping studies in software engineering. Journal of Systems and Software 86, 10 (2013), 2594–2610.
 - Yifei Xiao, T.Y. Yang, Xiao Pan, Fan Xie, and Zhongwei Chen. 2023. A reinforcement learning based construction material supply strategy using robotic crane and computer vision for building reconstruction after an earthquake. In *Proceedings of the Canadian Conference Pacific Conference on Earthquake Engineering 2023*. Canadian Association for Earthquake Engineering (CAEE), Vancouver, British Columbia, Canada. https://arxiv.org/abs/2308.16280 Accepted paper.
 - Ren Xin, Chang-xia Yu, Ji-hao Chen, and Lei Jiang. 2010. Discussion on the typical seismic strengthening techniques of masonry building walls after Wenchuan earthquake. In 2010 International Conference on Mechanic Automation and Control Engineering. IEEE, 1126–1129.
 - Affan Yasin and Muhammad Ijlal Hasnain. 2012. On the quality of grey literature and its use in information synthesis during systematic literature reviews.
 - Honglei Yi and Jay Yang. 2014. Research trends of post disaster reconstruction: The past and the future. Habitat International 42 (2014), 21-29.
 - Yin Yi-lin and Zhou Jin-e. 2010. Research on the application of CM-agent model in public projects of post-disaster reconstruction. In 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM), Vol. 3. IEEE, 1756–1760.
 - Milad Zamanifar, Maghsood Pooryari, and Mohammad Reza Ahadi. 2014. Estimation of reconstruction cost and traffic functionality relating to roadway transportation lifelines after natural disasters. *International Journal of Transportation Engineering* 2, 1 (2014), 67–80.
 - He Zhang, Muhammad Ali Babar, and Paolo Tell. 2011. Identifying relevant studies in software engineering. *Information and Software Technology* 53, 6 (2011), 625–637.
 - Xiaoming Zhang, Bingyu Sun, Tao Mei, and Rujing Wang. 2010. Post-disaster restoration based on fuzzy preference relation and bean optimization algorithm. In 2010 IEEE Youth conference on information, computing and telecommunications. IEEE, 271–274.
 - Wensheng Zhou, Feng Mao, ZE Liu, Qiang Li, and Qiang Fu. 2009. Research and application of planning support system based on 3S technique for post-disaster reconstruction after Wenchuan earthquake in China. In 2009 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2. IEEE, II–666.
 - W. Zhou, F. Mao, Z. E. Liu, Q. Li, and Q. Fu. 2009. Research and application of planning support system based on 3S technique for post-disaster reconstruction after Wenchuan Earthquake in China. In 2009 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2. II-666-II-669. https://doi.org/10.1109/IGARSS.2009.5418174