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Abstract

The wide adoption of AI- and ML-based systems in sensitive domains
raises severe concerns about their fairness. The research community has pro-
posed several methods for bias mitigation in recent years. However, despite
its relevance and wide application, the topic of bias mitigation in multi-class
classification settings – i.e., where the number of classes to predict is > 2 –
remains under-explored.

To address this limitation, in this paper, we tackle the problem of fair-
ness in multi-class classification settings. We first formulate the problem
of fair learning in multi-class classification as a multi-objective problem be-
tween effectiveness (i.e., prediction correctness) and multiple linear fairness
constraints. Next, we propose a Generalised Exponentiated Gradient (GEG)
algorithm to solve this task. GEG is an in-processing algorithm that enhances
fairness in binary and multi-class classification settings under multiple fair-
ness definitions. We conduct an extensive empirical evaluation of GEG and
demonstrate that it is a practical solution for bias mitigation without compro-
mising prediction effectiveness. Additionally, from our empirical evaluation,
we draw a set of practical insights for adopting GEG in real-world scenar-
ios. GEG is general and flexible, making it applicable to multiple use-case
scenarios.
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1. Introduction1

With the increasing adoption of AI- and ML-based software systems in2

sensitive domains such as healthcare [1], finance [2], and education [3], it is3

critical to ensure that they act in an unbiased and ethical way. In other words,4

they must be fair. The relevance of software fairness has been highlighted5

in recent years not only in research literature [4, 5, 6], but also in regulations6

such as the European Union’s recently introduced AI Act [7].7

Bias can be defined as the systematic discrimination or favouritism of a8

software system toward individuals or groups identified by a set of sensitive9

features [4]. When not properly addressed, it may cause severe consequences10

and discrimination, like for the recruitment instrument employed by Ama-11

zon, which penalised women candidates for IT job positions,1 or the crimi-12

nal recidivism predictions made by the commercial risk assessment software13

COMPAS, which misjudged black individuals based on biased profiling [8].14

For this reason, the research community has proposed several methods for15

bias mitigation at different processing levels [4, 5]. However, the majority of16

them can be applied only to binary classification tasks. Instead, several ex-17

amples of multi-class classification approaches have been applied in sensitive18

domains such as education [9, 10], food [11, 12], and health [13]. Ensuring19

that these systems behave in a fair and unbiased way is paramount, also to20

achieve some of the United Nations Sustainable Development Goals (SDG)21

[14], e.g., SDG 2 (zero huger) [11, 12], SDG 3 (good health and well-being)22

[13], and SDG 4 (quality education) [9, 10].23

To address this limitation, in this paper, we first formulate the problem24

of fairness in multi-class classification as a multi-objective problem between25

effectiveness (i.e., prediction correctness) and multiple fairness definitions.26

Next, we propose a Generalised Exponentiated Gradient (GEG) algorithm27

to solve this task. GEG is an extension of the original Exponentiated Gradi-28

ent (EG) bias mitigation algorithm first proposed by Agarwal et al. for binary29

classification [15]. However, GEG differs from the original EG approach in30

two aspects: first, it can mitigate bias in both binary and multi-class clas-31

sification tasks; second, it mitigates bias across multiple fairness constraints32

simultaneously. These additions make GEG more flexible and practical for33

multiple use cases.34

We perform an extensive evaluation of GEG, benchmarking it against35

1https://www.bbc.co.uk/news/technology-45809919
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six approaches across seven multi-class and three binary datasets, using four36

widely adopted effectiveness metrics and three fairness definitions. Results37

show that GEG is a practical approach for bias mitigation in multi-class38

classification, overcoming existing baselines. Additionally, from our empirical39

evaluation, we draw practical tips on employing GEG in real-case scenarios.40

Specifically, the main contributions of our work are the following:41

• We formulate the problem of fairness in multi-class classification as a42

multi-objective problem between multiple fairness constraints.43

• We propose a Generalised Exponentiated Gradient (GEG) approach44

to mitigate bias in binary and multi-class classification tasks under45

multiple fairness constraints simultaneously.46

• We perform an extensive empirical evaluation of GEG against multiple47

baselines, datasets, and metrics.48

• We draw a set of practical insights on adopting GEG in real-case sce-49

narios.50

• We release a replication package including a Python implementation51

of GEG and the results of our empirical evaluation to foster future52

research [16].53

The rest of this paper is structured as follows: Section 2 provides back-54

ground knowledge on fairness and discusses related work. Section 3 presents55

the fairness learning in multi-class classification as a multi-objective optimi-56

sation problem and describes the GEG approach. Section 4 describes the57

empirical evaluation performed, while Section 5 discusses the obtained re-58

sults and provides practical insights. Finally, Section 6 discusses future work59

and concludes the study.60

2. Background and Related Work61

Fairness is defined as: ”The absence of prejudice and favouritism of a62

software system toward individuals or groups” [4]. When a system behaves63

unfairly, it is said to be biased. Bias can originate from three main sources [4]:64

the data used to train the AI and ML components, a biased implemen-65

tation of the AI and ML components, and the people that interact with66

those components. In this paper, we focus on mitigating bias in an ML67
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model trained on biased data (i.e., data bias). More specifically, we focus on68

multi-class classification with structured, tabular data.69

In general, the fairness of an ML model can be assessed following two70

main criteria: individual and group fairness [17]. Individual fairness re-71

quires that two individuals who are similar to one another receive the same72

treatment (i.e., an ML model should make identical predictions). Most of73

the time, two individuals are treated as similar if they only differ in sensi-74

tive attributes2 (e.g., ethnicity, gender, age). Group fairness, on the other75

hand, addresses fairness by treating population groups, defined by protected76

attributes (like ethnicity, gender, or age), equally. In this work, we focus on77

group fairness criteria, as they are more common and have been more exten-78

sively addressed in previous work [18, 19]. Specifically, many group fairness79

definitions and corresponding metrics have been proposed in the literature80

[4, 5]. The general idea behind all group fairness definitions is that, given two81

groups named privileged and unprivileged (e.g., men and women), they82

must have the same probability of having a given positive outcome from the83

ML model, possibly conditioned on the ground truth label [4]. In Sections84

3 and 4, we provide the formal specification of the fairness definitions we85

address in this paper.86

In addition to measuring bias, research has proposed several methods87

for mitigating bias at different processing levels [18, 4]. Generally, improve-88

ment in fairness implies a reduction in the effectiveness of a model’s pre-89

dictions [6, 18, 20], and all bias mitigation methods try to identify the op-90

timal trade-off between fairness and effectiveness. In particular, there are91

three main categories of bias mitigation methods based on when they are92

applied in an ML workflow: pre-processing, in-processing, and post-93

processing [21, 18, 4]. Pre-processing bias mitigation methods aim to94

reduce bias by applying changes to the training data. For instance, one can95

assign more weight to data instances for a population group that is prone to96

being misclassified [22, 23]. In-processing bias mitigation methods make97

changes to the design and training process of ML models to achieve fair-98

ness. One example is the inclusion of fairness metrics as part of the train-99

ing loss [24, 15]. Alternatives include the tuning of hyperparameters [25]100

or the use of ensembles, where each model can consider different popula-101

2In the rest of this paper, we will use the terms ”sensitive attributes”, ”protected
attributes” or ”sensitive features” as synonyms.
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tion groups [26] or metrics [27]. Post-processing bias mitigation methods102

are applied once an ML model has been successfully trained. This can in-103

volve changes to the model’s predictions [28] or modifications to the model104

itself [29].105

The majority of bias mitigation methods proposed in the literature focus106

on binary classification tasks, while very few address multi-class classification107

[18, 4]. One of the first approaches proposed for multi-class bias mitigation108

is the Blackbox post-processing approach by Putzel et al. [30], which ex-109

tends the Equalized Odds algorithm [28] to the multi-class setting. This110

algorithm builds a linear optimisation program that optimises the predic-111

tions of an already trained classifier to satisfy the Equalized Odds fairness112

definition for multi-class settings. A similar approach is the Demographic113

Parity post-processing approach proposed by Denis et al. [31], where the114

predictions are instead optimised under the Demographic Parity fairness def-115

inition. One of the most recent approaches for multi-class bias mitigation is116

the pre-processing Debiaser for Multiple Variables (DEMV) algorithm pro-117

posed by d’Aloisio et al. [23]. This algorithm extends the Sampling method of118

Kamiran et al. [22] to the multi-class setting and has been shown to overcome119

existing bias mitigation methods for multi-class classification.120

Our proposed approach differs from the previous ones in that it is an in-121

processing bias mitigation method. In particular, our work extends the Expo-122

nentiated Gradient in-processing algorithm proposed by Agarwal et al. [15].123

In their work, the authors formulate a multi-objective optimisation problem124

to train a binary classifier under specific fairness constraints. Next, they125

present an Exponentiated Gradient (EG) method to solve this optimisation126

task. Our proposed approach extends the original EG algorithm to the multi-127

class classification setting and to the simultaneous optimisation of multiple128

fairness constraints, making it more general and practical for real-world use129

cases.130

3. Methodology131

In this section, a general in-processing fairness-enhancing model for clas-132

sification tasks is presented that can handle binary as well as multi-class data.133

This model offers the flexibility to include several fairness metrics in a sin-134

gle optimisation problem. Our goal is to make fair and accurate predictions135

with minimal loss in prediction effectiveness. Our work is inspired by the136

widely adopted reduction-based framework of Agarwal et al. [32], extending137
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it to accommodate multi-class classification and additional fairness condi-138

tions. These modifications make the model more adaptable and suitable for139

real-world applications.140

Consider training data as triplets (X,A, Y ), where X ∈ X represents the141

input features, and A ∈ A is a protected attribute like gender or race that142

could affect fairness, while Y ∈ Y is the output label. The set Y can be binary143

(i.e., {0, 1}) or multi-class (like {0, 1, . . . , K}). The idea is to learn a classifier144

h : X → Y from a hypothesis class H that meets fairness constraints and145

gives accurate predictions. We assume that the true labels Y and predicted146

labels h(X) belong to the same space Y , and define yp ∈ Y as the positive or147

favourable outcome.148

A common technique for guaranteeing fairness during model training is149

to include fairness as a constraint in the learning objective [32, 33]. The150

constrained optimisation problem that results from this is as follows:151

min
h∈H

R(h) subject to γi(h) ≤ ϵi, for i = 1, . . . , n (1)

where R(h) = P(h(X) ̸= Y ) is the classification error, which is defined as152

the probability that the prediction of the model h(X) does not correspond153

to the true label Y . There are n constraints, each represented by γi(h),154

which represents a fairness constraint expressed as a linear condition, with a155

threshold ϵi. These fairness constraints are central to the learning problem156

formulation, and we will discuss them in the next part.157

3.1. Fairness Constraints158

In the context of fairness constraints, the literature has proposed several159

group fairness constraints [4, 18, 19], each implementing different definitions160

of fairness between groups defined by the sensitive attribute A (see Section161

2). Here, we give two widely used definitions of group fairness that can be162

generalised to both binary classification and multi-class classification settings163

[23].164

Definition 1 (Demographic Parity). A classifier h is said to satisfy demo-165

graphic parity if the probability of making a positive prediction is the same166

between all groups defined by the protected attribute A. In mathematical167

terms, it can be expressed as:168

P(h(X) = yp | A = a) = P(h(X) = yp), for all a ∈ A, (2)

where yp ∈ {0, 1, . . . , K} denotes the positive or favorable class label.169
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Definition 2 (Equalized Odds). A classifier h meets the equalized odds fair-170

ness definition when the probability of predicting the favourable class label is171

the same across all groups determined by the protected attribute A, given the172

true label Y . In mathematical terms, this condition means:173

P(h(X) = yp | Y = y, A = a) = P(h(X) = yp | Y = y), ∀y ∈ Y , a ∈ A, (3)

In this equation, yp ∈ {0, 1, . . . , K} refers to the positive or favorable class174

label, while y ∈ {0, 1, . . . , K} is the value of the true label.175

To get back to the binary context, we only need to think about a label176

space Y = {0, 1} and treat yp = 1 as the positive label. Then, the definitions177

above just turn into the usual binary forms that are often used in fairness178

studies [4].179

Fairness constraints are often reworded with expectations to make them180

easier to integrate into optimisation problems. For binary case, where the181

label space is Y = {0, 1} and the classifier output is h(X) ∈ {0, 1}, Agarwal et182

al. [32] showed that definitions such as Demographic Parity and Equalized183

Odds can be written as linear constraints using expected values. This is184

because the chance of guessing the positive class yp = 1 can be written as:185

P(h(X) = yp) = E[h(X)]. (4)

where E[h(X)] is the expected value of the classifier output h(X).186

In case of a fair classifier, the expected value of h(X) should be the same187

regardless of the value of the sensitive features. This leads to simplifying the188

expressions of fairness constraints. For example, the Demographic Parity189

constraint becomes190

E[h(X) | A = a] = E[h(X)], ∀a ∈ A, (5)

while the Equalized Odds condition becomes191

E[h(X) | A = a, Y = y] = E[h(X) | Y = y], ∀a ∈ A, y ∈ Y . (6)

This idea can also extend to the multi-class situation, where h(X) ∈192

{0, 1, . . . , K}. We apply indicator functions to separate the prediction of a193

specific class yp ∈ Y . In this instance, the chance of predicting yp becomes194
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P(h(X) = yp) = E[1{h(X)=yp}], (7)

with the indicator function defined as195

1{h(X)=yp} =

{
1 if h(X) = yp,

0 otherwise.

Using this formulation, the fairness constraints can be expressed in a196

unified expectation-based form that applies to both binary and multi-class197

settings. The Demographic Parity constraint is then198

E[1{h(X)=yp} | A = a] = E[1{h(X)=yp}] ∀a ∈ A, (8)

while Equalized Odds become199

E[1{h(X)=yp} | A = a, Y = y] = E[1{h(X)=yp} | Y = y] ∀a ∈ A, y ∈ Y . (9)

These fairness notions can be reformulated in a structured manner that is200

compatible with linear optimization.201

3.2. Fairness Constraints as Linear Moment Conditions202

To make the fairness constraints more flexible and suitable for numer-203

ical optimisation, they are relaxed into linear inequalities of the classifier204

moments that take the form:205

γi(h) =
m∑
k=1

Mik µj(h) ≤ ϵi, i = 1, . . . , n. (10)

Here, Mij are the entries of a matrix M ∈ Rn×m that defines how each206

moment contributes to each constraint, where m is the number of moments207

and n is the number of constraints. The term ϵi denotes the upper bound208

for the i-th constraint, and µj(h) is the j-th moment of the classifier h, given209

by:210

µj(h) = E[gj(X,A, Y, h(X)) | Ej], j = 1, . . . ,m, (11)

In this formula, the function gj : X × A × Y × Y → [0, 1] is a measurable211

function influenced by the predicted label h(X). The event Ej is a set con-212

dition on the variables (X,A, Y ), like A = a or A = a & Y = y, and it does213

not depend on the model.214
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To illustrate the concept, consider the case of Demographic Parity. To215

address fairness under this definition, for each group a ∈ A, we define the216

following moment217

µa(h) = E[1{h(X)=yp} | A = a], (12)

This moment captures the probability that the classifier predicts the favourable218

class yp for individuals within group a. Moreover, we define the overall mo-219

ment:220

µ∗(h) = E[1{h(X)=yp}], (13)

corresponding to the unconditional selection rate of class yp across the entire221

population.222

A classifier is fair under the Demographic Parity definition if it provides223

the same expected value of 1{h(X)=yp} regardless of the value of A. Therefore,224

each equality constraint can be expressed as225

µa(h) = µ∗(h), ∀a ∈ A, (14)

which can be equivalently rewritten as the pair of inequalities:226

µa(h)− µ∗(h) ≤ 0,
227

µ∗(h)− µa(h) ≤ 0.

In the binary sensitive attribute case where A ∈ {0, 1}, the group A = 0228

is our unprivileged group and A = 1 our privileged group. Hence, in this229

case, these further inequalities hold as230

µ0(h)− µ∗(h) ≤ 0,
231

µ∗(h)− µ0(h) ≤ 0,
232

µ1(h)− µ∗(h) ≤ 0,
233

µ∗(h)− µ1(h) ≤ 0.

In the case of a biased classifier, we expect µ1(h) > µ∗(h) > µ0(h). To234

achieve Demographic Parity, we build a constraint system of the form:235

M µ(h) ≤ ϵ, with ϵ =
[
0 · · · 0

]⊤ ∈ R4, µ(h) =

µ0(h)
µ1(h)
µ∗(h)

 , and
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236

M =


1 0 −1
−1 0 1
0 1 −1
0 −1 1

 .

Here, the coefficients Mij are simply +1, −1, or 0 depending on whether the237

moment µj(h) appears with a positive sign, a negative sign, or not at all. For238

instance, the inequality µ0(h) − µ∗(h) ≤ 0 corresponds to the row [1, 0,−1]239

in M , while µ∗(h)− µ0(h) ≤ 0 corresponds to [−1, 0, 1].240

Similarly, for Equalized Odds, we impose that the classifier’s prediction241

is independent of the sensitive attribute A conditionally on the true label242

Y = y. This leads to defining separate moments for each group a ∈ A and243

each label y ∈ Y , of the form:244

µa,y(h) = E[1{h(X)=yp} | A = a, Y = y],

which represent the group-wise true positive (or false positive) rates, depend-245

ing on the value of yp. We also define the corresponding average moment246

across all groups:247

µ∗,y(h) = E[1{h(X)=yp} | Y = y],

which captures the overall prediction rate for class yp conditioned on the true248

label Y = y. Equalized Odds is satisfied when249

µa,y(h) = µ∗,y(h) ∀a ∈ A, y ∈ Y .

As before, each equality can be expressed as two inequalities:250

µa,y(h)− µ∗,y(h) ≤ 0

251

µ∗,y(h)− µa,y(h) ≤ 0

In the binary sensitive attribute case A ∈ {0, 1}, we may identify a group252

A = 0 as the unprivileged group and A = 1 as the privileged group. Therefore,253

in this case, we obtain the following set of inequalities for each true label254

yp ∈ Y :255

µ0,yp(h)− µ∗,yp(h) ≤ 0
256

µ∗,yp(h)− µ0,yp(h) ≤ 0
257

µ1,yp(h)− µ∗,yp(h) ≤ 0
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258

µ∗,yp(h)− µ1,yp(h) ≤ 0

This leads to a constraint system of the form:259

M µ(h) ≤ ϵ, with ϵ =
[
0 · · · 0

]⊤ ∈ R4, µ(h) =

µ0,yp(h)
µ1,yp(h)
µ∗,yp(h)

 , and

260

M =


1 0 −1
−1 0 1
0 1 −1
0 −1 1

 .

It is possible to enforce multiple fairness definitions simultaneously by com-261

bining their respective constraint formulations. In particular, one may im-262

pose both Demographic Parity and Equalized Odds as joint conditions on263

the classifier. This results in the following pair of fairness constraints:264

µa(h) = µ∗(h), and µa,y(h) = µ∗,y(h), ∀a ∈ A, y ∈ Y .

Therefore, it can be expressed as inequalities as265

µa(h)− µ∗(h) ≤ 0
266

µ∗(h)− µa(h) ≤ 0
267

µa,y(h)− µ∗,y(h) ≤ 0
268

µ∗,y(h)− µa,y(h) ≤ 0.

When the binary sensitive attribute is in the form A ∈ {0, 1}, this gives us269

an inequality system:270

µ0(h)− µ∗(h) ≤ 0
271

µ∗(h)− µ0(h) ≤ 0
272

µ1(h)− µ∗(h) ≤ 0
273

µ∗(h)− µ1(h) ≤ 0
274

µ0,yp(h)− µ∗,yp(h) ≤ 0
275

µ∗,yp(h)− µ0,yp(h) ≤ 0
276

µ1,yp(h)− µ∗,yp(h) ≤ 0
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277

µ∗,yp(h)− µ1,yp(h) ≤ 0

We can compactly express this constraint system as:278

M µ(h) ≤ ϵ, with ϵ =
[
0 · · · 0

]⊤ ∈ R8, µ(h) =


µ0(h)
µ1(h)
µ∗(h)
µ0,yp(h)
µ1,yp(h)
µ∗,yp(h)

 , and

279

M =



1 0 −1 0 0 0
−1 0 1 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 −1
0 0 0 −1 0 1
0 0 0 0 1 −1
0 0 0 0 −1 1


.

After defining the fairness constraints as linear inequalities over condi-280

tional moments, we can now move to the optimization procedure. We intro-281

duce a general form of the Exponentiated Gradient algorithm of Agarwal et282

al. [32], which was first made for binary classification tasks and for only one283

fairness constraint. Our updated version supports both binary and multi-284

class classification tasks in the presence of multiple fairness constraints.285

3.3. Generalized Exponentiated Gradient (GEG)286

In this part, we provide a detailed description of the Generalized Ex-287

ponentiated Gradient (GEG) method, an in-processing bias mitigation algo-288

rithm aimed at achieving fairness both in binary and multi-class classification289

tasks under multiple fairness definitions.290

The primary goal of our approach is to find a classifier that yields the291

highest possible fairness while still being effective in its predictions, as for-292

malised in the optimisation problem 1. Since the hypothesis space H is not293

convex and the loss function is not continuous, the direct optimisation of294

this problem faces significant computational challenges, which may lead to295

convergence issues, meaning the absence of an optimal solution. To address296

these difficulties, we adopt the method of Agarwal et al. [32] and rewrite the297
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problem in terms of random classifiers, given as distributions Q ∈ ∆(H) over298

the hypothesis class. This relaxation transforms the original optimization299

problem into a convex one, allowing us to utilize efficient convex optimiza-300

tion methods. Thus, there is a solution to this problem that can be written301

as302

min
Q∈∆(H)

R(Q) subject to γi(Q) ≤ ϵi, for i = 1, . . . , n, (15)

where ∆(H) is the set of all probability distributions over H, R(Q) =303 ∑
h∈H Q(h)R(h) is the expected classification error under the randomized304

classifier Q, and γi(Q) =
∑

h∈H Q(h) γi(h) is the i-th expected fairness mo-305

ment.306

In a real-world scenario, we have access only to a finite training set and307

not the whole distribution of (X,A, Y ). Thus, we obtain estimates for the308

expectations by taking averages over the sample at hand, and we allow for309

a bit slack ϵ̂i in the constraint violations. In addition, the random classifier310

Q can be expressed as a sparse distribution on a set of predictors learned311

during training.312

This brings us to the following approximation problem:313

min
Q∈∆(H)

R̂(Q) subject to γ̂i(Q) ≤ ϵ̂i, i = 1, . . . , n, (16)

where R̂(Q), γ̂i(Q) are learnt over the training samples, the tolerance con-314

stants ϵ̂i are allowed to adapt at every learning iteration.315

To solve the optimization problem (16), we reformulate it as a saddle-316

point problem using a Lagrangian approach. This transformation enables the317

use of duality principles from convex optimization and supports the design of318

efficient iterative algorithms. Specifically, we define the Lagrangian function:319

L(Q,λ) = R̂(Q) +
n∑

i=1

λi (γ̂i(Q)− ϵ̂i) , (17)

where λ = (λ1, λ2, . . . , λn) are the non-negative dual variables (Lagrange320

multipliers) associated with the fairness constraints.321

The optimization problem is thus transformed into the following min-max322

saddle-point problem:323

min
Q∈∆(H)

max
λ≥0
L(Q,λ). (18)

13



As a way to make the optimization problem more stable and better behaved,324

we restrict the dual domain by adding an ℓ1-norm constraint on λ. The325

resulting saddle-point formulation is:326

min
Q∈∆(H)

max
λ≥0, ∥λ∥1≤B

L(Q,λ). (19)

According to Sion’s minimax theorem [34], a solution to this problem is guar-327

anteed to exist, since L(Q,λ) is linear in both arguments and the domains328

of Q and λ are convex and compact (the dual compactness is ensured by the329

ℓ1-norm bound).330

To find this saddle point, we follow the strategy used by Agarwal et al. [32],331

which frames the problem as a zero-sum game between two players. The332

learner, who selects a randomized classifier Q ∈ ∆(H) to minimize the clas-333

sification loss while satisfying fairness constraints, and the auditor, who up-334

dates the dual variables λ to maximize the Lagrangian by penalizing con-335

straint violations.336

At each iteration, the learner constructs a new classifier ht ∈ H by solving a337

cost-sensitive classification problem. This problem is formulated by assigning338

to each training sample (xj, aj, yj)
N
j=1 a signed weight w

(t)
j that combines two339

key components: the classification objective and the fairness constraints.340

Formally, we define:341

w
(t)
j = γerror

j +
n∑

i=1

λ
(t)
i · γfair

i,j ,

where γerror
j ∈ {+1,−1} encodes the misclassification cost with respect to342

the target class yp, defined as:343

γerror
j =

{
+1 if yj ̸= yp,

−1 if yj = yp,

and γfair
i,j ≡ γi(h(xj)) denotes the individual (per-sample) contribution of344

observation j to the violation of the i-th fairness constraint. The scalar λ
(t)
i345

represents the Lagrange multiplier associated with this constraint at iteration346

t.347

The sign of w
(t)
j determines the target label in the cost-sensitive classification.348

The adjusted label ỹ
(t)
j is then set as:349
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ỹ
(t)
j =

{
yp if w

(t)
j > 0,

yj otherwise.

The learner then solves the following cost-sensitive optimization problem:350

ht = argmin
h∈H

∑
j

|w(t)
j | · 1{h(xj )̸=ỹ

(t)
j }.

Then, the auditor updates the dual variables λ(t) by computing:351

λ
(t)
i =

B · exp(θ(t)i )

1 +
∑n

k=1 exp(θ
(t)
k )

, for all i = 1, . . . , n.

In practice, the update of θ(t) may also involve a learning rate or smoothing352

strategy to stabilize optimization, as implemented in our algorithm. This353

formula ensures that λ(t) lies in the scaled probability simplex of radius B,354

emphasizing the most violated constraints.355

The process converges to an approximate saddle point (Q⋆,λ⋆), which rep-356

resents a randomized classifier that achieves an optimal balance between357

predictive performance and fairness. The resulting distribution Q⋆ is sparse,358

supported on a small number of base classifiers ht, and is normalized to form359

a valid probability distribution over the hypothesis class. The final weights360

λ⋆ provide insight into the most influential fairness constraints.361

The optimization process stops when the duality gap falls below a small362

threshold ν, indicating that the current solution is close to a saddle point.363

The duality gap is computed as the difference between the Lagrangian value364

of the best single classifier and that of the current mixture Q:365

Gap(Q,λ) = max
h∈H
L(h,λ)− L(Q,λ).

When this gap becomes sufficiently small, no further improvement is ex-366

pected, and the optimization terminates.367

This entire procedure is formally presented in Algorithm 1.368
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Algorithm 1 Generalized Exponentiated Gradient (GEG)

Require: Training data (X,A, Y ) with Y ∈ {0, 1, . . . , K}, positive class yp
1: Hypothesis class H, fairness constraints {γ̂i}ni=1 with thresholds {ϵi}ni=1

2: Parameters: learning rate η > 0, tolerance δ > 0, max iterations T ,
duality gap threshold ν > 0, minimum iterations tmin ∈ N.

Ensure: Randomized classifier Q ∈ ∆(H)
3: Initialize dual variables: θ ← 0, count vector Q← ∅, budget B ← 1/δ
4: for t = 1 to T do

5: Compute dual weights: λ
(t)
i ←

B · exp(θ(t)i )

1 +
∑n

k=1 exp(θ
(t)
k )

6: for each training sample j = 1 to N do
7: Compute signed weight: w

(t)
j ← γerror

j +
∑

i λ
(t)
i · γfair

i,j

8: Adjust label: ỹj ←

{
yp if w

(t)
j > 0

yj otherwise

9: Normalize weights: w
(t)
j ←

N · |w(t)
j |∑N

k=1 |w
(t)
k |

for all j

10: end for
11: Train classifier ht on {(xj, ỹj, w

(t)
j )}Nj=1

12: Update count: Q[ht]← Q[ht] + 1
13: Compute constraint violations: γ̂i(ht)

14: Update dual: θ
(t+1)
i ← θ

(t)
i + η · (γ̂i(ht)− ϵi)

15: Compute current mixture: Qt(h)←
Q(h)∑
h′ Q(h′)

for all h

16: Compute duality gap: Gapt ← maxh∈H L(h,λ)− L(Qt,λ)
17: if Gapt < ν and t ≥ tmin then
18: break
19: end if
20: end for

21: Normalize final distribution: Q(h)← Q(h)∑
h′ Q(h′)

for all h ∈ H

22: return Q

3.4. Implementation Details369

We implemented GEG in Python 3.9 by extending the EG implementa-370

tion provided by the Fairlearn Python library [35]. In all the experiments371
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reported in Section 4, we set η to 10−5 and δ to 0.05. We provide the im-372

plementation of GEG and the evaluation scripts online for public use and373

research [16].374

4. Evaluation375

In this section, we describe the empirical evaluation conducted to assess376

the effectiveness of GEG. Specifically, our evaluation is driven by the follow-377

ing research questions (RQ):378

RQ1 Multi-class classification: To what extent is GEG able to mitigate379

bias while keeping a high prediction effectiveness in a multi-class clas-380

sification context?381

This RQ acts as a “sanity check” and benchmarks the ability of GEG382

in mitigating bias while keeping high prediction effectiveness against a383

base-classifier in the multiclass classification context.384

RQ2 Binary classification: To what extent is GEG able to mitigate bias385

while keeping a high prediction effectiveness in a binary classification386

context?387

In addition to the multiclass classification context, we benchmark GEG388

against a base classifier employed in the binary classification context.389

RQ3 Baseline comparison: How does GEG compare against existing bias390

mitigation methods in the multi-class classification tasks?391

In this RQ, we benchmark GEG against the Debiaser for Multiple392

Variables (DEMV) pre-processing approach, which is, to the best of393

our knowledge, the main approach proposed for bias mitigation in the394

multi-class classification context [23].395

RQ4 Different base classifiers: How does GEG perform under different396

base-classifiers?397

Finally, this RQ evaluate the extent in which GEG can be effectively398

employed with different base-classifiers in the multi-class classification399

context.400

In the following, we describe in detail the datasets employed (Section 4.1),401

the metrics used in the evaluation (Section 4.3), and the overall evaluation402

process (Section 4.2).403
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Table 1: Employed Datasets

Name Sens. Attribute Instances Features Classes Class Distr.

CMC [36] religion 1473 10 3
1 : 42.7%
2 : 22.6%
3 : 34.7%

Crime [37] race 1,994 100 6

100 : 23.8%
200 : 15.8%
300 : 21.2%
400 : 19.9%
500 : 19.3%

Drug [38] race 1,885 15 3
0 : 21.9%
1 : 25.1%
2 : 52.9%

Law [3] gender 20,427 14 3
0 : 41.6%
1 : 27.9%
2 : 31.1%

Obesity [39] age 1,490 17 5

0 : 19.3%
1 : 19.5%
2 : 19.4%
3 : 23.5%
4 : 18.2%

Park [40] age 5,875 19 3
0 : 30.0%
1 : 44.6%
2 : 24.9%

Wine [41] type 6,438 13 4

4 : 3.4%
5 : 34.1%
6 : 45.3%
7 : 17.2%

Adult [42] sex 30,940 102 2
0 : 75.7%
1 : 24.2%

COMPAS [8] race 6,167 399 2
0 : 54.4%
1 : 45.5%

German [43] sex 1,000 59 2
0 : 30%
1 : 70%

4.1. Datasets404

Table 1 reports the list of datasets employed in our study. For each405

dataset, we report its name, the sensitive attribute as reported in the cor-406

responding source paper, the number of instances and features, the number407

of possible classes to be predicted, and their distribution. The datasets have408

been selected based on their relevance, diversity, and adoption in previous409

fairness studies [23, 44, 45]. Specifically, to answer RQ1, RQ3, and RQ4, we410

employ the following seven multi-class datasets:411
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1. Contraceptive Method Choice (CMC) [36]. This dataset contains412

1,473 instances and 10 features about the adoption of contraceptive413

methods by women in Indonesia. The sensitive feature is religion and414

the positive outcome is 2 (long-term use).415

2. Communities and Crime (Crime) [37]. This dataset includes 1,994416

instances and 100 features about the per-capita violent crimes in U.S.417

communities. The sensitive feature is race and the positive outcome is418

100 (low rate of crimes).419

3. Drug Usage (Drug) [38]. This dataset includes 1,885 instances and420

15 features about the frequency of drug consumption. The sensitive421

attribute is race and the positive class is 0 (never use).422

4. Law School Admission (Law) [3]. This dataset contains 20,427423

samples and 14 features about admissions scores to a law school. The424

sensitive attribute is gender and the positive outcome is 2 (high admis-425

sion score).426

5. Obesity Estimation (Obesity) [39]. This dataset contains 1,490427

instances and 17 features about patients’ obesity estimation. The sen-428

sitive feature is age and the positive class is 0 (no obesity).429

6. Parkinson’s Telemonitoring (Park) [40]. This dataset includes430

5,875 instances and 19 features about patients affected by Parkinson’s431

disease, measured with the Unified Parkinson’s Disease Rating Scale432

(UPDRS) classification. The sensitive attribute is age and the positive433

class is 0 (mild class).434

7. Wine Quality (Wine) [41]. This dataset includes 6,438 instances435

and 13 features about wine quality classification. The sensitive feature436

is wine type and the positive outcome is 6 (high quality class).437

We employ instead the following binary datasets to answer the RQ2 of438

our study:439

1. Adult Income (Adult) [42]. This dataset comprises 30,940 instances440

and 102 features related to the income of people in the U.S. The sensi-441

tive attribute is sex and the positive outcome is 1 (high income class).442
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2. ProPublic Recidivism (COMPAS) [8]. This dataset contains 6,167443

samples and 399 features (one-hot encoded) about the recidivism pre-444

diction of condemned people. The sensitive feature is race and the445

positive class is 0 (no recidivism).446

3. German Credit (German) [43]. This dataset includes 1,000 in-447

stances and 59 features about the classification of people as good or448

bad credit risk. The sensitive attribute is sex and the positive outcome449

is 1 (good credit risk).450

4.2. Benchmarks451

To answer the RQ1 and RQ2 of our study, we compare the fairness and452

effectiveness of GEG with those of a Logistic Regression (LR) classifier. We453

have chosen this model because it has been successfully applied in previous454

fairness studies and in multi-class classification tasks [18, 23]. To ensure a455

fair comparison, the same LR model is used as a base-classifier for GEG.456

Specifically, concerning RQ1, we employ three versions of GEG, each one457

adopting a different fairness constraint during the optimisation process: one458

version uses a Statistical Parity constraint (GEG-SP), another version em-459

ploys the Equalised Odds constraint (GEG-EO), and the last version uses a460

Combined Parity constraint, optimising for both SP and EO at the same time461

(GEG-CP). Instead, concerning RQ2, since the implementation of GEG-SP462

and GEG-EO for binary classification is equal to the already existing EG463

approach from Agarwal et al. [15], we consider these methods as additional464

baselines. Therefore, we compare these results with those of GEG-CP, which465

is our novel contribution for binary classification.466

Concerning RQ3, we compare the three versions of GEG (i.e., GEG-SP,467

GEG-EO, and GEG-CP) with the Debiaser for Multiple Variables (DEMV)468

approach, which is, to the best of our knowledge, the main approach proposed469

for bias mitigation in multi-class classification [23]. It is a pre-processing470

method that balances the dataset such that all the sensitive groups are471

equally represented. As for the first two RQs, we employ an LR model472

as a base classifier.473

Finally, for RQ4, we benchmark the three versions of GEG against a474

Random Forest (RF) and a Gradient Boosting (GB) classifier. The choice475

for these models is still driven by their adoption in previous fairness studies476

and multi-class classification tasks [18, 23]. As with the other RQs, to ensure477

a fair comparison, we use the same base classifiers for GEG.478
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For all ML models, we use their implementation available in the scikit-479

learn Python library, with their default hyperparameters [46]. For DEMV,480

we employ the implementation available in the paper [23] with its default481

hyperparameters.482

4.3. Evaluation Metrics and Methods483

4.3.1. Metrics484

We employ a heterogeneous set of metrics to evaluate the fairness and485

effectiveness of the approaches analysed in each RQ.486

Concerning effectiveness metrics, following previous studies [44, 47], we487

employ the following metrics:488

• Accuracy. This metric is defined as the percentage of correct predic-
tions over the total predictions of a model:

Accuracy =
1

N

N∑
i=1

1(ŷi = yi)

where N is the total number of samples, ŷi and yi are the i-th true and489

predicted samples, and 1(ŷi = yi) is a function which is equal to 1 if490

the prediction is equal to the true label and 0 otherwise. It ranges from491

0 to 1, where 1 is the highest score [48].492

• Macro Precision. This metric is an adaptation of the Precision score
for the multi-class classification context [49]. It is defined as the un-
weighted average of the class-wise precision score:

Macro Precision =
1

K

K∑
i=1

Precisionk

whereK is the number of classes and Precisionk is the ratio of correctly493

predicted k class over all k predictions [49]. It ranges from 0 to 1, where494

1 is the highest score.495

• Macro Recall. Like Macro Precision, this metric is an adaptation
of the Recall score for multi-class classification [49]. It is defined It is
defined as the unweighted average of the class-wise recall score:

Macro Recall =
1

K

K∑
i=1

Recallk
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where K is the number of classes and Recallk is the ratio of instances496

of the k class identified by the model [49]. It ranges from 0 to 1, where497

1 is the highest score.498

• Macro F1 Score. This metric is defined as the harmonic mean be-
tween Macro Precision and Macro Recall [49]:

Macro F1 Score =2× Macro Precision×Macro Recall

Macro Precision +Macro Recall

it ranges from 0 to 1, where 1 is the best score.499

Concerning fairness, we consider three widely adopted fairness definitions500

[23, 44, 18]:501

• Statistical Parity Difference (SPD). This metric implements the
Demographic Parity fairness definition defined in Definition 1. It mea-
sures fairness as the difference in the probability of having the positive
outcome (yp) predicted, being in the privileged group or not [26]. It is
defined as:

SPD = Pr(ŷ = yp|A = 0)− Pr(ŷ = yp|A = 1)

where A = 0 and A = 1 are the unprivileged and privileged groups,502

respectively. This metric ranges from -1 to +1, and the closer to 0, the503

fairer the model.504

• Equal Opportunity Difference (EOD). This metric assesses fair-
ness as the difference in the probability of having the positive outcome
predicted conditioned on the value of the true label, being in the priv-
ileged group or not [28]. It is defined as:

EOD = Pr(ŷ = yp|y = yp, A = 0)− Pr(ŷ = yp|y = yp, A = 1)

this metric ranges from -1 to +1, and the closer to 0, the fairer the505

model.506

• Average Odds Difference (AOD). This metric implements the Equal-
ized Odds fairness definition shown in Definition 2. It measures fairness
as the difference between true positive (TPR) and false positive (FPR)
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rates, concerning the positive outcome, for items being in the privileged
and unprivileged groups. Formally, it is defined as:

AOD =
1

2
((FPRA=0 − FPRA=1) + (TPRA=0 − TPRA=1))

like the other fairness metrics, this one ranges from -1 to +1, where the507

closer to 0, the fairer the model.508

Following previous works [47, 44, 23], we consider absolute values of SPD,509

EOD, and AOD to have a clearer understanding of the fairness improvement510

in a model.511

4.3.2. Methods512

To mitigate the risk of data selection bias, for each RQ, we perform a513

10-fold cross-validation with shuffling. For each fold, we train the models514

on the training set and compute the fairness and effectiveness metrics on515

the testing set. To ensure a fair evaluation, we use the same splits for all516

approaches in each RQ by fixing the random seed. Additionally, when we517

evaluate DEMV for the RQ3, following the original paper [23], we apply the518

pre-processing approach only on the training set.519

After training and testing the approaches, we report the mean and stan-520

dard deviation of the metrics obtained. Moreover, we employ the non-521

parametric one-sided Wilcoxon signed-rank test to assess the statistical sig-522

nificance of the difference between the metrics obtained by baselines and523

GEG. The Wilcoxon test is a non-parametric test that verifies the null hy-524

pothesis that the median between two dependent samples is different [50].525

Being non-parametric, it raises the bar for significance by making no assump-526

tions about the underlying samples. Specifically, the null hypothesis we check527

is ”H0 : The objective O obtained by GEG is not improved with respect to the528

baseline approach x”. The alternative hypothesis is: ”H1 : The objective O529

obtained by GEG is improved with respect to the baseline approach x”. For530

effectiveness metrics “improved” means that the score obtained by GEG is531

higher than the baseline. On the contrary, for fairness metrics “improved”532

means that the score obtained by GEG is lower than the baseline. Following533

standards [51, 52], we set the confidence value to 0.05. Therefore, we reject534

the null hypothesis if the test’s p-value is < 0.05.535
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Table 2: RQ1: Results for Multi-Class Classification against an LR Baseline. Winning
cases are highlighted in blue , losing cases are highlighted in orange . Best fairness scores
are highlighted in bold.

Approach Acc Prec Rec F1 SPD EOD AOD

C
M
C

LR 0.606±0.033 0.583±0.037 0.56±0.032 0.553±0.033 0.115±0.066 0.178±0.129 0.116±0.076
GEG - SP 0.602±0.028 0.575±0.032 0.556±0.026 0.549±0.027 0.015±0.057 0.045±0.147 0.02±0.063
GEG - EO 0.601±0.034 0.574±0.038 0.56±0.031 0.557±0.032 0.028±0.045 0.01±0.171 0.007±0.076
GEG - CP 0.606±0.03 0.576±0.038 0.561±0.032 0.556±0.034 0.058±0.062 0.057±0.162 0.042±0.087

C
ri
m
e

LR 0.474±0.037 0.434±0.046 0.452±0.032 0.427±0.037 0.382±0.062 0.266±0.288 0.247±0.146
GEG - SP 0.406±0.04 0.403±0.035 0.397±0.038 0.392±0.035 0.028±0.048 0.056±0.174 0.072±0.07
GEG - EO 0.333±0.077 0.41±0.107 0.307±0.081 0.246±0.11 0.128±0.111 0.074±0.234 0.066±0.136
GEG - CP 0.355±0.031 0.373±0.031 0.333±0.029 0.315±0.033 0.087±0.065 0.118±0.213 0.06±0.103

D
ru
g

LR 0.687±0.023 0.618±0.033 0.614±0.018 0.611±0.025 0.213±0.125 0.276±0.181 0.177±0.1
GEG - SP 0.683±0.025 0.613±0.031 0.606±0.024 0.604±0.026 0.021±0.093 0.087±0.179 0.058±0.088
GEG - EO 0.667±0.029 0.584±0.039 0.586±0.027 0.576±0.031 0.043±0.118 0.09±0.262 0.034±0.141
GEG - CP 0.684±0.028 0.609±0.029 0.606±0.023 0.6±0.024 0.066±0.121 0.03±0.164 0.012±0.101

L
aw

LR 0.666±0.015 0.64±0.016 0.652±0.014 0.644±0.015 0.083±0.019 0.039±0.048 0.051±0.025
GEG - SP 0.679±0.008 0.653±0.007 0.667±0.008 0.655±0.007 0.011±0.022 0.014±0.048 0.016±0.03
GEG - EO 0.67±0.018 0.645±0.016 0.657±0.016 0.648±0.015 0.039±0.019 0.003±0.038 0.009±0.02
GEG - CP 0.692±0.017 0.666±0.018 0.68±0.018 0.664±0.015 0.038±0.021 0.009±0.039 0.002±0.019

O
b
es
it
y LR 0.668±0.044 0.654±0.046 0.665±0.033 0.651±0.038 0.049±0.043 0.012±0.119 0.011±0.067

GEG - SP 0.654±0.042 0.636±0.041 0.653±0.03 0.634±0.037 0.002±0.063 0.109±0.117 0.062±0.072
GEG - EO 0.621±0.054 0.612±0.05 0.619±0.046 0.604±0.051 0.037±0.08 0.054±0.12 0.018±0.088
GEG - CP 0.662±0.04 0.656±0.035 0.659±0.03 0.646±0.031 0.041±0.048 0.025±0.151 0.007±0.084

P
ar
k

LR 0.473±0.02 0.33±0.039 0.402±0.014 0.351±0.017 0.214±0.072 0.323±0.127 0.232±0.081
GEG - SP 0.477±0.025 0.438±0.073 0.407±0.017 0.369±0.025 0.004±0.055 0.074±0.102 0.011±0.066
GEG - EO 0.443±0.033 0.435±0.025 0.437±0.028 0.431±0.029 0.015±0.05 0.014±0.068 0.007±0.051
GEG - CP 0.454±0.02 0.431±0.024 0.423±0.024 0.42±0.025 0.042±0.037 0.045±0.098 0.032±0.048

W
in
e

LR 0.454±0.019 0.246±0.062 0.259±0.006 0.201±0.012 0.115±0.046 0.105±0.062 0.115±0.048
GEG - SP 0.455±0.014 0.281±0.095 0.265±0.008 0.22±0.013 0.009±0.027 0.008±0.029 0.006±0.026
GEG - EO 0.439±0.012 0.232±0.078 0.251±0.007 0.177±0.023 0.002±0.031 0.018±0.045 0.004±0.034
GEG - CP 0.45±0.014 0.26±0.046 0.254±0.006 0.182±0.015 0.002±0.027 0.006±0.035 0.002±0.028

5. Results536

In the following, we report the results of our empirical evaluation. In each537

table, we report in blue the winning cases (i.e., Wilcoxon p-value< 0.05 with538

respect to the baseline(s)), while we highlight in orange the losing cases539

(i.e., Wilcoxon p-value > 0.95 with respect to the baseline(s)). Additionally,540

for each dataset analysed, we highlight the best fairness score (i.e., the one541

closest to zero) in bold.542

5.1. RQ1: Multi-class classification.543

Table 2 reports the results of the comparison of the fairness and effective-544

ness obtained by the three versions of GEG and the baseline LR model.545

From the table, we observe how all versions of GEG significantly improve546

the fairness of the base classifier under all datasets and fairness definitions547
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considered. The only dataset in which we do not see a significant improve-548

ment under all fairness definitions is Obesity, where the bias of the base549

LR classifier is also low. Surprisingly, the improvement in fairness does not550

always come at the cost of reduced effectiveness. In fact, only in Crime551

and Obesity we observe a significant reduction in all effectiveness scores by552

specific versions of GEG. This reduction could be explained by the higher553

number of classes in these two datasets (6 and 5, respectively; see Table 1),554

which may make the overall prediction task more complex for the model. We555

also observe a reduction in effectiveness by the GEG-EO model for the Drug556

dataset. Nevertheless, even if statistically significant, the loss in effective-557

ness is not large, with a maximum loss in accuracy of 0.14 points concerning558

GEG-EO with the Crime dataset. Indeed, with the Law, Park, and, par-559

tially, Wine datasets, we observe a statistically significant improvement also560

in effectiveness scores compared with the base LR classifier.561

Finally, from the fairness scores in Table 2, we do not observe a clear562

winner among the three versions of GEG employed. This means that all three563

versions are effective in bias mitigation under all fairness definitions analysed.564

Notably, all versions of GEG achieve statistically significantly better results565

also under the AOD fairness definition, which is not directly optimised by566

the model.567

Answer to RQ1: GEG significantly improves the fairness of an LR classifier
under multiple multi-class datasets and fairness definitions. The improvement
in fairness achieved by GEG does not come with a high cost in effectiveness.
Indeed, the effectiveness in predictions obtained by GEG is even higher than
the LR model in 3 out of 7 datasets.

568

5.2. RQ2: Binary Classification569

Table 3 reports the fairness and effectiveness achieved by GEG for binary570

classification. We recall that, in this context, our novel contribution is the571

extension of the original EG approach from Agarwal et al. [15] with the CP572

constraint (GEG-CP in Table 3).573

From the table, we observe that GEG-CP is the approach achieving the574

best fairness results in 8 out of 9 cases analysed (89%). Notably, GEG-CP is575

also the only approach achieving statistically better results under AOD with576

the German dataset. However, this improvement in fairness comes at the cost577

of reduced effectiveness (especially Recall and F1 Score). This result suggests578

that GEG-CP tends to produce fewer positive outcomes across all groups.579
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Table 3: RQ2: Results for Binary Classification against an LR model and the base EG
approach from Agarwal et al. Winning cases are highlighted in blue , losing cases are
highlighted in orange . Best fairness values are highlighted in bold.

Approach Acc Prec Rec F1 SPD EOD AOD

A
d
u
lt

LR 0.827±0.007 0.772±0.012 0.727±0.01 0.744±0.01 0.179±0.016 0.154±0.048 0.119±0.026
EG - SP 0.825±0.006 0.774±0.012 0.711±0.008 0.732±0.009 0.077±0.016 0.13±0.071 0.058±0.036
EG - EO 0.828±0.004 0.776±0.009 0.725±0.005 0.744±0.005 0.145±0.018 0.051±0.075 0.055±0.038
GEG - CP 0.769±0.005 0.739±0.025 0.535±0.007 0.506±0.013 0.008±0.007 0.012±0.031 0.009±0.017

C
om

p
as

LR 0.675±0.021 0.675±0.02 0.666±0.02 0.666±0.021 0.174±0.04 0.102±0.031 0.15±0.042
EG - SP 0.675±0.022 0.675±0.021 0.666±0.021 0.666±0.022 0.049±0.071 0.014±0.069 0.023±0.068
EG - EO 0.669±0.018 0.669±0.018 0.66±0.017 0.66±0.017 0.031±0.055 0.026±0.041 0.005±0.058
GEG - CP 0.611±0.031 0.695±0.028 0.578±0.025 0.52±0.049 0.001±0.072 0.014±0.051 0.019±0.073

G
er
m
an

LR 0.745±0.044 0.693±0.063 0.661±0.058 0.669±0.06 0.21±0.108 0.182±0.17 0.17±0.13
EG - SP 0.745±0.062 0.694±0.088 0.66±0.071 0.668±0.077 0.067±0.147 0.075±0.158 0.037±0.178
EG - EO 0.748±0.056 0.698±0.079 0.664±0.067 0.672±0.072 0.1±0.169 0.088±0.189 0.059±0.194
GEG - CP 0.708±0.051 0.613±0.193 0.528±0.029 0.479±0.056 0.022±0.047 0.016±0.028 0.029±0.058

Therefore, practitioners can choose to adopt GEG-CP in use cases where a580

reduction in positive outcomes is acceptable to achieve higher fairness (e.g.,581

in use cases protected by specific regulations).582

Answer to RQ2: In the binary classification context, GEG-CP achieves the
best fairness reduction in 88% of the cases analysed compared to baselines.
However, this improvement comes at the cost of a reduced ability of the model
to deliver positive outcomes.

583

5.3. RQ3: Baseline Comparison584

Table 4 shows the results of the comparison between the three versions585

of GEG and the DEMV baseline for multi-class classification.586

We observe how GEG achieves the best fairness scores in 20 out of 21587

cases analysed (95%). The improvement achieved by GEG is also statistically588

significant in the Crime, Law, Park, and Wine datasets. Additionally, the589

effectiveness achieved by GEG is mostly comparable with that achieved by590

DEMV. Specifically, we observe how GEG-EO and, partially, GEG-CP tend591

to provide statistically significantly lower Precision, Recall and, consequently,592

F1 Score, under specific datasets (namely Crime, Drug, Obesity, and, par-593

tially, Wine). However, this decrease is observed primarily in datasets with594

a high number of classes or a high class imbalance (see Table 1). In fact,595

this reduction in Precision and Recall does not impact Accuracy in a sta-596

tistically significant manner. On the contrary, GEG-SP provides consistent597

effectiveness across all datasets, whereas all versions of GEG show a con-598
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Table 4: RQ3: Comparison with the DEMV pre-processing approach for multi-class clas-
sification. Winning cases are highlighted in blue , losing cases are highlighted in orange .
Best fairness values are highlighted in bold.

Approach Acc Prec Rec F1 SPD EOD AOD

C
M
C

DEMV 0.601±0.024 0.581±0.036 0.55±0.018 0.542±0.02 0.056±0.044 0.053±0.163 0.036±0.065
GEG - SP 0.602±0.028 0.575±0.032 0.556±0.026 0.549±0.027 0.015±0.057 0.045±0.147 0.02±0.063
GEG - EO 0.601±0.034 0.574±0.038 0.56±0.031 0.557±0.032 0.028±0.045 0.01±0.171 0.007±0.076
GEG - CP 0.606±0.03 0.576±0.038 0.561±0.032 0.556±0.034 0.058±0.062 0.057±0.162 0.042±0.087

C
ri
m
e

DEMV 0.451±0.032 0.406±0.046 0.429±0.021 0.398±0.031 0.324±0.053 0.224±0.268 0.199±0.121
GEG - SP 0.406±0.04 0.403±0.035 0.397±0.038 0.392±0.035 0.028±0.048 0.056±0.174 0.072±0.07
GEG - EO 0.333±0.077 0.41±0.107 0.307±0.081 0.246±0.11 0.128±0.111 0.074±0.234 0.066±0.136
GEG - CP 0.355±0.031 0.373±0.031 0.333±0.029 0.315±0.033 0.087±0.065 0.118±0.213 0.06±0.103

D
ru
g

DEMV 0.687±0.029 0.624±0.039 0.61±0.028 0.612±0.031 0.098±0.1 0.039±0.157 0.033±0.093
GEG - SP 0.683±0.025 0.613±0.031 0.606±0.024 0.604±0.026 0.021±0.093 0.087±0.179 0.058±0.088
GEG - EO 0.667±0.029 0.584±0.039 0.586±0.027 0.576±0.031 0.043±0.118 0.09±0.262 0.034±0.141
GEG - CP 0.684±0.028 0.609±0.029 0.606±0.023 0.6±0.024 0.066±0.121 0.03±0.164 0.012±0.101

L
aw

DEMV 0.669±0.019 0.645±0.019 0.658±0.019 0.649±0.019 0.063±0.01 0.02±0.045 0.03±0.023
GEG - SP 0.679±0.008 0.653±0.007 0.667±0.008 0.655±0.007 0.011±0.022 0.014±0.048 0.016±0.03
GEG - EO 0.67±0.018 0.645±0.016 0.657±0.016 0.648±0.015 0.039±0.019 0.003±0.038 0.009±0.02
GEG - CP 0.692±0.017 0.666±0.018 0.68±0.018 0.664±0.015 0.038±0.021 0.009±0.039 0.002±0.019

O
b
es
it
y DEMV 0.661±0.044 0.655±0.041 0.66±0.036 0.648±0.039 0.05±0.047 0.014±0.159 0.014±0.087

GEG - SP 0.654±0.042 0.636±0.041 0.653±0.03 0.634±0.037 0.002±0.063 0.109±0.117 0.062±0.072
GEG - EO 0.621±0.054 0.612±0.05 0.619±0.046 0.604±0.051 0.037±0.08 0.054±0.12 0.018±0.088
GEG - CP 0.662±0.04 0.656±0.035 0.659±0.03 0.646±0.031 0.041±0.048 0.025±0.151 0.007±0.084

P
ar
k

DEMV 0.466±0.018 0.414±0.088 0.394±0.016 0.349±0.022 0.155±0.063 0.224±0.124 0.163±0.072
GEG - SP 0.477±0.025 0.438±0.073 0.407±0.017 0.369±0.025 0.004±0.055 0.074±0.102 0.011±0.066
GEG - EO 0.443±0.033 0.435±0.025 0.437±0.028 0.431±0.029 0.015±0.05 0.014±0.068 0.007±0.051
GEG - CP 0.454±0.02 0.431±0.024 0.423±0.024 0.42±0.025 0.042±0.037 0.045±0.098 0.032±0.048

W
in
e

DEMV 0.453±0.015 0.26±0.084 0.259±0.006 0.204±0.011 0.143±0.057 0.132±0.068 0.143±0.058
GEG - SP 0.455±0.014 0.281±0.095 0.265±0.008 0.22±0.013 0.009±0.027 0.008±0.029 0.006±0.026
GEG - EO 0.439±0.012 0.232±0.078 0.251±0.007 0.177±0.023 0.002±0.031 0.018±0.045 0.004±0.034
GEG - CP 0.45±0.014 0.26±0.046 0.254±0.006 0.182±0.015 0.002±0.027 0.006±0.035 0.002±0.028

sistently, and even statistically significantly, larger effectiveness in datasets599

with a more balanced label distribution.600

Answer to RQ3: GEG achieves better fairness scores than DEMV in 95%
of the cases analysed. Regarding effectiveness, GEG-SP provides consistent, or
even statistically significantly better scores than DEMV. On the contrary, GEG-
EO and, to a lesser extent, GEG-CP may struggle more with datasets with a
high number of classes or high class imbalance.

601

5.4. RQ4: Different Base Classifiers602

Table 5 presents the results of applying GEG with an RF classifier. We603

observe that the RF classifier generally demonstrates higher predictive per-604

formance compared to the LR model. Concerning fairness, in all use cases,605
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Table 5: RQ4: Results obtained with RF base classifier. Winning cases are highlighted
in blue , losing cases are highlighted in orange . Best fairness scores are highlighted in
bold.

Approach Acc Prec Rec F1 SPD EOD AOD

C
M
C

RF 0.98±0.015 0.979±0.016 0.977±0.017 0.978±0.017 0.136±0.08 0.022±0.087 0.012±0.045
GEG - SP 0.868±0.022 0.869±0.02 0.882±0.02 0.86±0.025 0.029±0.092 0.015±0.083 0.058±0.068
GEG - EO 0.984±0.009 0.985±0.008 0.981±0.01 0.983±0.009 0.141±0.084 0.034±0.078 0.019±0.04
GEG - CP 0.794±0.041 0.833±0.022 0.833±0.032 0.79±0.043 0.04±0.16 0.01±0.062 0.036±0.083

C
ri
m
e

RF 0.499±0.031 0.471±0.03 0.478±0.025 0.466±0.027 0.413±0.069 0.483±0.232 0.355±0.14
GEG - SP 0.437±0.04 0.441±0.033 0.411±0.022 0.395±0.03 0.155±0.055 0.307±0.244 0.139±0.124
GEG - EO 0.507±0.036 0.473±0.036 0.484±0.029 0.47±0.034 0.424±0.061 0.497±0.194 0.367±0.117
GEG - CP 0.415±0.04 0.442±0.032 0.386±0.03 0.364±0.036 0.19±0.046 0.379±0.226 0.197±0.113

D
ru
g

RF 0.676±0.032 0.606±0.033 0.597±0.027 0.597±0.028 0.143±0.125 0.177±0.194 0.108±0.128
GEG - SP 0.598±0.034 0.544±0.034 0.547±0.032 0.531±0.028 0.029±0.11 0.132±0.201 0.024±0.108
GEG - EO 0.676±0.019 0.605±0.029 0.598±0.025 0.597±0.025 0.179±0.099 0.211±0.141 0.142±0.087
GEG - CP 0.647±0.022 0.574±0.034 0.58±0.02 0.544±0.034 0.046±0.121 0.101±0.175 0.011±0.104

L
aw

RF 0.969±0.006 0.971±0.005 0.97±0.006 0.97±0.005 0.162±0.024 0.151±0.053 0.079±0.026
GEG - SP 0.951±0.007 0.952±0.006 0.954±0.006 0.953±0.006 0.027±0.021 0.126±0.048 0.015±0.023
GEG - EO 0.97±0.005 0.972±0.004 0.971±0.005 0.971±0.005 0.159±0.024 0.14±0.042 0.073±0.022
GEG - CP 0.918±0.007 0.922±0.006 0.929±0.006 0.923±0.006 0.087±0.026 0.125±0.04 0.027±0.019

O
b
es
it
y RF 0.929±0.017 0.934±0.013 0.928±0.018 0.927±0.016 0.064±0.058 0.018±0.055 0.0±0.032

GEG - SP 0.901±0.031 0.916±0.024 0.9±0.031 0.9±0.031 0.012±0.07 0.025±0.055 0.034±0.045
GEG - EO 0.931±0.013 0.935±0.011 0.929±0.013 0.929±0.012 0.05±0.049 0.019±0.035 0.009±0.028
GEG - CP 0.926±0.016 0.932±0.015 0.924±0.015 0.924±0.015 0.061±0.044 0.002±0.062 0.006±0.036

P
ar
k

RF 0.853±0.014 0.863±0.011 0.851±0.016 0.856±0.013 0.013±0.035 0.205±0.076 0.084±0.043
GEG - SP 0.815±0.012 0.824±0.01 0.814±0.014 0.817±0.012 0.058±0.036 0.218±0.062 0.138±0.039
GEG - EO 0.852±0.012 0.863±0.01 0.849±0.013 0.855±0.011 0.014±0.036 0.204±0.07 0.083±0.042
GEG - CP 0.855±0.01 0.865±0.007 0.853±0.013 0.858±0.01 0.008±0.047 0.211±0.069 0.09±0.043

W
in
e

RF 0.709±0.015 0.77±0.046 0.556±0.023 0.589±0.031 0.122±0.036 0.093±0.037 0.093±0.036
GEG - SP 0.708±0.012 0.731±0.086 0.548±0.025 0.579±0.036 0.067±0.041 0.064±0.031 0.041±0.041
GEG - EO 0.709±0.015 0.755±0.083 0.55±0.025 0.581±0.033 0.119±0.051 0.092±0.053 0.091±0.049
GEG - CP 0.707±0.012 0.726±0.077 0.548±0.02 0.578±0.03 0.121±0.044 0.091±0.039 0.093±0.044

at least one version of GEG achieves higher fairness scores than the RF base-606

lines. However, it is important to note that this increase in fairness often607

results in reduced effectiveness. This decline in effectiveness can be attributed608

to the high effectiveness of the baseline RF classifier, which leads to a sys-609

tematic trade-off: to enhance fairness, the overall effectiveness is typically610

lowered [18, 53].611

Similar results are observed when employing a GB base classifier, as612

shown in Table 6. Notably, the baseline GB model emerges as the most613

effective and fair classifier among the three models analysed for multi-class614

classification. However, GEG still mitigates bias significantly when the base615

classifier’s bias is relatively high (as in the Crime dataset). Finally, we ob-616

serve some cases in which the bias of GEG exceeds that of the baseline model617

under the AOD definition. These issues can be explained by the low bias of618
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Table 6: RQ4: Results obtained with GB base classifier. Winning cases are highlighted
in blue , losing cases are highlighted in orange . Best fairness scores are highlighted in
bold.

Approach Acc Prec Rec F1 SPD EOD AOD

C
M
C

GB 0.996±0.005 0.995±0.006 0.996±0.005 0.995±0.005 0.134±0.104 0.011±0.017 0.004±0.008
GEG - SP 0.869±0.033 0.877±0.027 0.886±0.029 0.861±0.035 0.014±0.113 0.004±0.012 0.09±0.027
GEG - EO 0.996±0.005 0.995±0.006 0.996±0.005 0.995±0.005 0.134±0.104 0.011±0.017 0.004±0.008
GEG - CP 0.801±0.062 0.844±0.033 0.841±0.042 0.798±0.062 0.04±0.134 0.007±0.014 0.044±0.071

C
ri
m
e

GB 0.492±0.046 0.468±0.045 0.472±0.038 0.463±0.041 0.417±0.042 0.534±0.216 0.38±0.101
GEG - SP 0.425±0.044 0.43±0.046 0.408±0.04 0.404±0.041 0.04±0.058 0.127±0.266 0.009±0.136
GEG - EO 0.481±0.038 0.454±0.037 0.462±0.034 0.452±0.035 0.34±0.041 0.362±0.18 0.265±0.087
GEG - CP 0.364±0.047 0.4±0.06 0.339±0.04 0.32±0.048 0.179±0.085 0.342±0.265 0.208±0.124

D
ru
g

GB 0.676±0.031 0.606±0.032 0.602±0.027 0.6±0.029 0.167±0.13 0.18±0.156 0.127±0.115
GEG - SP 0.674±0.021 0.598±0.029 0.593±0.023 0.592±0.024 0.012±0.065 0.085±0.154 0.05±0.056
GEG - EO 0.681±0.034 0.613±0.039 0.608±0.032 0.605±0.036 0.113±0.102 0.108±0.156 0.065±0.094
GEG - CP 0.663±0.038 0.588±0.038 0.587±0.033 0.583±0.034 0.029±0.104 0.06±0.157 0.034±0.085

L
aw

GB 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.134±0.024 0.0±0.001 0.0±0.001
GEG - SP 0.979±0.004 0.979±0.004 0.981±0.003 0.979±0.004 0.004±0.029 0.0±0.001 0.081±0.012
GEG - EO 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 0.134±0.024 0.0±0.001 0.0±0.001
GEG - CP 0.944±0.007 0.949±0.006 0.954±0.006 0.948±0.007 0.056±0.031 0.0±0.001 0.044±0.016

O
b
es
it
y GB 0.95±0.014 0.948±0.014 0.948±0.014 0.947±0.014 0.051±0.058 0.015±0.099 0.007±0.055

GEG - SP 0.929±0.022 0.931±0.018 0.927±0.02 0.927±0.021 0.01±0.072 0.007±0.082 0.028±0.057
GEG - EO 0.95±0.014 0.948±0.014 0.948±0.014 0.947±0.014 0.051±0.058 0.015±0.099 00.007±0.055
GEG - CP 0.95±0.014 0.948±0.014 0.948±0.014 0.947±0.014 0.051±0.058 0.015±0.099 0.007±0.055

P
ar
k

GB 0.867±0.013 0.88±0.01 0.864±0.014 0.87±0.012 0.031±0.04 0.166±0.064 0.061±0.037
GEG - SP 0.87±0.013 0.885±0.01 0.866±0.014 0.873±0.012 0.011±0.042 0.188±0.068 0.082±0.039
GEG - EO 0.667±0.023 0.734±0.018 0.651±0.021 0.646±0.027 0.073±0.044 0.123±0.063 0.013±0.039
GEG - CP 0.849±0.018 0.859±0.02 0.852±0.013 0.854±0.016 0.062±0.054 0.134±0.061 0.029±0.042

W
in
e

GB 0.606±0.015 0.566±0.043 0.453±0.02 0.475±0.026 0.116±0.038 0.055±0.067 0.092±0.035
GEG - SP 0.6±0.015 0.559±0.049 0.452±0.015 0.475±0.022 0.006±0.046 0.032±0.059 0.014±0.043
GEG - EO 0.6±0.016 0.554±0.042 0.445±0.019 0.466±0.025 0.041±0.039 0.001±0.054 0.02±0.032
GEG - CP 0.606±0.019 0.564±0.042 0.453±0.015 0.475±0.02 0.064±0.048 0.017±0.057 0.043±0.042

the baseline classifier. Therefore, in these cases, applying a bias mitiga-619

tion approach may not be needed. Nevertheless, even when higher than the620

baseline, the bias achieved by GEG is still low and not alarming (all values621

are < 0.1).622

Answer to RQ4: GEG is effective in bias mitigation even when more complex
base classifiers are employed, especially when the bias of the base classifier is
relatively high.

623

5.5. Practical Insights624

From our empirical analysis, we can draw the following main insights and625

recommendations on using GEG:626

• GEG is effective in bias mitigation for multi-class classification regard-627

less of the base classifier employed.628
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• When employing an LR classifier for multi-class classification tasks,629

adopting GEG in use cases where the number of classes to predict is630

≤ 4 can also increase the effectiveness of the model.631

• When adopting more complex classifiers such as RF or GB for multi-632

class classification, GEG is still effective in bias mitigation, but it may633

decrease the prediction’s effectiveness. Nevertheless, this decrease may634

be systemic to achieve higher fairness with highly effective classifiers.635

• GB emerged as the most effective and fair model for multi-class clas-636

sification. Nevertheless, we show that GEG is effective at mitigating637

bias when the bias of the base GB model is relatively high.638

• Concerning binary classification, users can employ GEG-CP in use639

cases where higher fairness is more relevant than having more posi-640

tive outcomes predicted (e.g., use cases protected by specific regula-641

tions [7]).642

• We suggest adopting GEG instead of the pre-preprocessing DEMV643

approach to achieve higher fairness. Additionally, when applied to644

datasets with low class imbalance, GEG can achieve higher prediction645

effectiveness than DEMV.646

6. Conclusion and Future Work647

In this paper, we addressed the topic of bias mitigation in multi-class clas-648

sification settings. We first formulate the problem of fair multi-class learning649

as a multi-objective optimisation problem under multiple linear fairness con-650

straints. Next, we propose GEG, an in-processing bias mitigation method to651

solve this task. In particular, GEG extends the EG approach from Agarwal652

et al. [15] to the multi-class classification setting. In addition, GEG allows653

the optimisation of a classifier under multiple fairness constraints simulta-654

neously. We perform an extensive evaluation of GEG against six baseline655

approaches across seven multi-class and three binary datasets, using four ef-656

fectiveness metrics and three fairness definitions. Our evaluation shows that657

GEG is successful at mitigating bias without severely impacting the effec-658

tiveness of the predictions. Additionally, we draw a set of practical insights659

for practitioners on using GEG in real-world scenarios.660
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Future work can extend GEG by including additional fairness constraints.661

Additionally, GEG can be extended to address intersectional fairness scenar-662

ios, i.e., where sensitive groups are identified by the combination of two or663

more sensitive variables [47].664
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