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Abstract

The wide adoption of AI- and ML-based systems in sensitive domains
raises severe concerns about their fairness. The research community has pro-
posed several methods for bias mitigation in recent years. However, despite
its relevance and wide application, the topic of bias mitigation in multi-class
classification settings — i.e., where the number of classes to predict is > 2 —
remains under-explored.

To address this limitation, in this paper, we tackle the problem of fair-
ness in multi-class classification settings. We first formulate the problem
of fair learning in multi-class classification as a multi-objective problem be-
tween effectiveness (i.e., prediction correctness) and multiple linear fairness
constraints. Next, we propose a Generalised Exponentiated Gradient (GEG)
algorithm to solve this task. GEG is an in-processing algorithm that enhances
fairness in binary and multi-class classification settings under multiple fair-
ness definitions. We conduct an extensive empirical evaluation of GEG and
demonstrate that it is a practical solution for bias mitigation without compro-
mising prediction effectiveness. Additionally, from our empirical evaluation,
we draw a set of practical insights for adopting GEG in real-world scenar-
ios. GEG is general and flexible, making it applicable to multiple use-case
scenarios.
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1. Introduction

With the increasing adoption of AI- and ML-based software systems in
sensitive domains such as healthcare [I], finance [2], and education [3], it is
critical to ensure that they act in an unbiased and ethical way. In other words,
they must be fair. The relevance of software fairness has been highlighted
in recent years not only in research literature [4, [ 6], but also in regulations
such as the European Union’s recently introduced Al Act [7].

Bias can be defined as the systematic discrimination or favouritism of a
software system toward individuals or groups identified by a set of sensitive
features [4]. When not properly addressed, it may cause severe consequences
and discrimination, like for the recruitment instrument employed by Ama-
zon, which penalised women candidates for I'T job positions[] or the crimi-
nal recidivism predictions made by the commercial risk assessment software
COMPAS, which misjudged black individuals based on biased profiling [§].

For this reason, the research community has proposed several methods for
bias mitigation at different processing levels [4, [5]. However, the majority of
them can be applied only to binary classification tasks. Instead, several ex-
amples of multi-class classification approaches have been applied in sensitive
domains such as education [9, [10], food [I1, 12], and health [I3]. Ensuring
that these systems behave in a fair and unbiased way is paramount, also to
achieve some of the United Nations Sustainable Development Goals (SDG)
[14], e.g., SDG 2 (zero huger) [11], 12], SDG 3 (good health and well-being)
[13], and SDG 4 (quality education) [9, [10].

To address this limitation, in this paper, we first formulate the problem
of fairness in multi-class classification as a multi-objective problem between
effectiveness (i.e., prediction correctness) and multiple fairness definitions.
Next, we propose a Generalised Exponentiated Gradient (GEG) algorithm
to solve this task. GEG is an extension of the original Exponentiated Gradi-
ent (EG) bias mitigation algorithm first proposed by Agarwal et al. for binary
classification [15]. However, GEG differs from the original EG approach in
two aspects: first, it can mitigate bias in both binary and multi-class clas-
sification tasks; second, it mitigates bias across multiple fairness constraints
simultaneously. These additions make GEG more flexible and practical for
multiple use cases.

We perform an extensive evaluation of GEG, benchmarking it against

"https://www.bbc.co.uk/news/technology-45809919
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six approaches across seven multi-class and three binary datasets, using four
widely adopted effectiveness metrics and three fairness definitions. Results
show that GEG is a practical approach for bias mitigation in multi-class
classification, overcoming existing baselines. Additionally, from our empirical
evaluation, we draw practical tips on employing GEG in real-case scenarios.
Specifically, the main contributions of our work are the following:

e We formulate the problem of fairness in multi-class classification as a
multi-objective problem between multiple fairness constraints.

e We propose a Generalised Exponentiated Gradient (GEG) approach
to mitigate bias in binary and multi-class classification tasks under
multiple fairness constraints simultaneously.

e We perform an extensive empirical evaluation of GEG against multiple
baselines, datasets, and metrics.

e We draw a set of practical insights on adopting GEG in real-case sce-
narios.

e We release a replication package including a Python implementation
of GEG and the results of our empirical evaluation to foster future
research [16].

The rest of this paper is structured as follows: Section [2| provides back-
ground knowledge on fairness and discusses related work. Section |3| presents
the fairness learning in multi-class classification as a multi-objective optimi-
sation problem and describes the GEG approach. Section {4| describes the
empirical evaluation performed, while Section [5| discusses the obtained re-
sults and provides practical insights. Finally, Section [6] discusses future work
and concludes the study.

2. Background and Related Work

Fairness is defined as: ”"The absence of prejudice and favouritism of a
software system toward individuals or groups” [4]. When a system behaves
unfairly, it is said to be biased. Bias can originate from three main sources [4]:
the data used to train the AI and ML components, a biased implemen-
tation of the AI and ML components, and the people that interact with
those components. In this paper, we focus on mitigating bias in an ML
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model trained on biased data (i.e., data bias). More specifically, we focus on
multi-class classification with structured, tabular data.

In general, the fairness of an ML model can be assessed following two
main criteria: individual and group fairness [I7]. Individual fairness re-
quires that two individuals who are similar to one another receive the same
treatment (i.e., an ML model should make identical predictions). Most of
the time, two individuals are treated as similar if they only differ in sensi-
tive attributeﬂ (e.g., ethnicity, gender, age). Group fairness, on the other
hand, addresses fairness by treating population groups, defined by protected
attributes (like ethnicity, gender, or age), equally. In this work, we focus on
group fairness criteria, as they are more common and have been more exten-
sively addressed in previous work [18, [19]. Specifically, many group fairness
definitions and corresponding metrics have been proposed in the literature
[4,5]. The general idea behind all group fairness definitions is that, given two
groups named privileged and unprivileged (e.g., men and women), they
must have the same probability of having a given positive outcome from the
ML model, possibly conditioned on the ground truth label [4]. In Sections
and {4 we provide the formal specification of the fairness definitions we
address in this paper.

In addition to measuring bias, research has proposed several methods
for mitigating bias at different processing levels [I8], 4]. Generally, improve-
ment in fairness implies a reduction in the effectiveness of a model’s pre-
dictions [0, I8, 20], and all bias mitigation methods try to identify the op-
timal trade-off between fairness and effectiveness. In particular, there are
three main categories of bias mitigation methods based on when they are
applied in an ML workflow: pre-processing, in-processing, and post-
processing [21], [I8, [4]. Pre-processing bias mitigation methods aim to
reduce bias by applying changes to the training data. For instance, one can
assign more weight to data instances for a population group that is prone to
being misclassified [22] 23]. In-processing bias mitigation methods make
changes to the design and training process of ML models to achieve fair-
ness. One example is the inclusion of fairness metrics as part of the train-
ing loss |24 15]. Alternatives include the tuning of hyperparameters [25]
or the use of ensembles, where each model can consider different popula-

’In the rest of this paper, we will use the terms ”sensitive attributes”, ”protected
attributes” or ”sensitive features” as synonyms.
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tion groups [26] or metrics [27]. Post-processing bias mitigation methods
are applied once an ML model has been successfully trained. This can in-
volve changes to the model’s predictions [28] or modifications to the model
itself [29].

The majority of bias mitigation methods proposed in the literature focus
on binary classification tasks, while very few address multi-class classification
[18, [4]. One of the first approaches proposed for multi-class bias mitigation
is the Blackbox post-processing approach by Putzel et al. [30], which ex-
tends the Equalized Odds algorithm [2§] to the multi-class setting. This
algorithm builds a linear optimisation program that optimises the predic-
tions of an already trained classifier to satisfy the Fqualized Odds fairness
definition for multi-class settings. A similar approach is the Demographic
Parity post-processing approach proposed by Denis et al. [31], where the
predictions are instead optimised under the Demographic Parity fairness def-
inition. One of the most recent approaches for multi-class bias mitigation is
the pre-processing Debiaser for Multiple Variables (DEMYV) algorithm pro-
posed by d’Aloisio et al. [23]. This algorithm extends the Sampling method of
Kamiran et al. [22] to the multi-class setting and has been shown to overcome
existing bias mitigation methods for multi-class classification.

Our proposed approach differs from the previous ones in that it is an in-
processing bias mitigation method. In particular, our work extends the Fxpo-
nentiated Gradient in-processing algorithm proposed by Agarwal et al. [15].
In their work, the authors formulate a multi-objective optimisation problem
to train a binary classifier under specific fairness constraints. Next, they
present an Exponentiated Gradient (EG) method to solve this optimisation
task. Our proposed approach extends the original EG algorithm to the multi-
class classification setting and to the simultaneous optimisation of multiple
fairness constraints, making it more general and practical for real-world use
cases.

3. Methodology

In this section, a general in-processing fairness-enhancing model for clas-
sification tasks is presented that can handle binary as well as multi-class data.
This model offers the flexibility to include several fairness metrics in a sin-
gle optimisation problem. Our goal is to make fair and accurate predictions
with minimal loss in prediction effectiveness. Our work is inspired by the
widely adopted reduction-based framework of Agarwal et al. [32], extending
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it to accommodate multi-class classification and additional fairness condi-
tions. These modifications make the model more adaptable and suitable for
real-world applications.

Consider training data as triplets (X, A,Y"), where X € X represents the
input features, and A € A is a protected attribute like gender or race that
could affect fairness, while Y € ) is the output label. The set ) can be binary
(i.e., {0,1}) or multi-class (like {0, 1, ..., K}). The idea is to learn a classifier
h : X — Y from a hypothesis class H that meets fairness constraints and
gives accurate predictions. We assume that the true labels Y and predicted
labels h(.X) belong to the same space ), and define y, € Y as the positive or
favourable outcome.

A common technique for guaranteeing fairness during model training is
to include fairness as a constraint in the learning objective [32], 33]. The
constrained optimisation problem that results from this is as follows:

2111?51 R(h) subject to ;(h)<¢, fori=1,...,n (1)
=

where R(h) = P(h(X) # Y) is the classification error, which is defined as
the probability that the prediction of the model hA(X) does not correspond
to the true label Y. There are n constraints, each represented by ~;(h),
which represents a fairness constraint expressed as a linear condition, with a
threshold ¢;. These fairness constraints are central to the learning problem
formulation, and we will discuss them in the next part.

3.1. Fairness Constraints

In the context of fairness constraints, the literature has proposed several
group fairness constraints [4] (18, [19], each implementing different definitions
of fairness between groups defined by the sensitive attribute A (see Section
2)). Here, we give two widely used definitions of group fairness that can be

generalised to both binary classification and multi-class classification settings
[23].

Definition 1 (Demographic Parity). A classifier h is said to satisfy demo-
graphic parity if the probability of making a positive prediction is the same
between all groups defined by the protected attribute A. In mathematical
terms, it can be expressed as:

Ph(X)=vy, | A=0a) =P(h(X) =vy,), forallacA, (2)

where y, € {0,1,..., K} denotes the positive or favorable class label.

6
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Definition 2 (Equalized Odds). A classifier h meets the equalized odds fair-
ness definition when the probability of predicting the favourable class label is
the same across all groups determined by the protected attribute A, given the
true label Y. In mathematical terms, this condition means:

P(X) =y |V =y, A=a) =P(X) =y, |V =y), Wy, ac A (3)

In this equation, y, € {0,1,..., K} refers to the positive or favorable class
label, while y € {0,1,..., K} is the value of the true label.

To get back to the binary context, we only need to think about a label
space Y = {0, 1} and treat y, = 1 as the positive label. Then, the definitions
above just turn into the usual binary forms that are often used in fairness
studies [4].

Fairness constraints are often reworded with expectations to make them
easier to integrate into optimisation problems. For binary case, where the
label space is ) = {0, 1} and the classifier output is h(X) € {0, 1}, Agarwal et
al. [32] showed that definitions such as Demographic Parity and Equalized
Odds can be written as linear constraints using expected values. This is
because the chance of guessing the positive class y, = 1 can be written as:

P(h(X) = yp) = E[A(X)]. (4)

where E[h(X)] is the expected value of the classifier output h(X).

In case of a fair classifier, the expected value of h(X) should be the same
regardless of the value of the sensitive features. This leads to simplifying the
expressions of fairness constraints. For example, the Demographic Parity
constraint becomes

E[h(X) | A =a] = E[h(X)], VYaec A, (5)

while the Equalized Odds condition becomes

ER(X)|A=aY =y =ERX)|Y =y], VacA yed. (6

This idea can also extend to the multi-class situation, where h(X) €
{0,1,..., K}. We apply indicator functions to separate the prediction of a
specific class y, € V. In this instance, the chance of predicting y, becomes

7
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P(h(X) = yp) = E[1nx)=,)]; (7)

with the indicator function defined as

1 1 if h(X) = yp,
(hX)=w} = 0 otherwise.

Using this formulation, the fairness constraints can be expressed in a
unified expectation-based form that applies to both binary and multi-class
settings. The Demographic Parity constraint is then

E[lgnx)=y,} | A= a] = E[linx)=y,)] VYa € A, (8)
while Equalized Odds become
El{nx)=y | A=0a,Y =y =E[lpx)=y,y | Y =y] Vae A yed. (9)

These fairness notions can be reformulated in a structured manner that is
compatible with linear optimization.

3.2. Fairness Constraints as Linear Moment Conditions

To make the fairness constraints more flexible and suitable for numer-
ical optimisation, they are relaxed into linear inequalities of the classifier
moments that take the form:

ilh) =3 Mipi(h) < e, i=1,...,n. (10)
k=1

Here, M;; are the entries of a matrix M € R™™ that defines how each
moment contributes to each constraint, where m is the number of moments
and n is the number of constraints. The term ¢; denotes the upper bound
for the i-th constraint, and y;(h) is the j-th moment of the classifier h, given
by:

pi(h) =Elg;(X, A Y, h(X)) | Ej], 7=1,...,m, (11)

In this formula, the function ¢g;: X x A x Y x Y — [0,1] is a measurable
function influenced by the predicted label h(X). The event E; is a set con-
dition on the variables (X, A,Y), like A=aor A=a & Y =y, and it does
not depend on the model.
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To illustrate the concept, consider the case of Demographic Parity. To
address fairness under this definition, for each group a € A, we define the
following moment

Ma(h) - E[l{h(X):yp} | A= a]v (12>

This moment captures the probability that the classifier predicts the favourable
class y, for individuals within group a. Moreover, we define the overall mo-
ment:

fx(h) = E[Lgnx)=y, ], (13)

corresponding to the unconditional selection rate of class y, across the entire
population.

A classifier is fair under the Demographic Parity definition if it provides
the same expected value of 1,(x)-,,) regardless of the value of A. Therefore,
each equality constraint can be expressed as

pa(h) = pu(h),  Va € A, (14)

which can be equivalently rewritten as the pair of inequalities:
a(h) = () <0,

pie(h) = pra(h) < 0.

In the binary sensitive attribute case where A € {0, 1}, the group A =0
is our unprivileged group and A = 1 our privileged group. Hence, in this
case, these further inequalities hold as

p(h) = pa (h) <0.

In the case of a biased classifier, we expect pi(h) > p«(h) > po(h). To
achieve Demographic Parity, we build a constraint system of the form:

- po(h)
Mu(h) <e, with e=[0 --- 0] €R* puh) = |m(h)|, and
i« (h)
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1 0 -1

-1 0 1
M= 0 1 -1
0 -1 1

Here, the coefficients M;; are simply +1, —1, or 0 depending on whether the
moment p;(h) appears with a positive sign, a negative sign, or not at all. For
instance, the inequality po(h) — p«(h) < 0 corresponds to the row [1,0, —1]
in M, while u.(h) — po(h) < 0 corresponds to [—1,0,1].

Similarly, for Equalized Odds, we impose that the classifier’s prediction
is independent of the sensitive attribute A conditionally on the true label
Y = y. This leads to defining separate moments for each group a € A and
each label y € Y, of the form:

fay(h) = E[lgx)=y,) | A=0a,Y =y],

which represent the group-wise true positive (or false positive) rates, depend-
ing on the value of y,. We also define the corresponding average moment
across all groups:

fay(h) = E[1inx)=y,y | Y =y,

which captures the overall prediction rate for class y, conditioned on the true
label Y = y. Equalized Odds is satisfied when

Pay(h) = pay(h) Yae A ye).

As before, each equality can be expressed as two inequalities:
fay(h) — pay(h) <0

M*,y(h) - Ma,y(h) <0

In the binary sensitive attribute case A € {0,1}, we may identify a group
A = 0 as the unprivileged group and A = 1 as the privileged group. Therefore,
in this case, we obtain the following set of inequalities for each true label

Yp € V:

10,5, (h) = fhay, (h) <0
/“L*ﬁl/p(h) - :uO,yp (h) S O
M1y, (h) — oy, (h> <0

10
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This leads to a constraint system of the form:

T ,UO,yp(h)
Mu(h)<e, with e=[0 --- 0] €R* pu(h)= |py(h)|, and
,u*,yp(h>
1 0 -1
-1 0 1
M= 0 1 -1
0 —1 1

It is possible to enforce multiple fairness definitions simultaneously by com-
bining their respective constraint formulations. In particular, one may im-
pose both Demographic Parity and Equalized Odds as joint conditions on
the classifier. This results in the following pair of fairness constraints:

fa(h) = pe(h), and tay(h) = puy(h), Vae A, yel.

Therefore, it can be expressed as inequalities as

foy(R) = flay(h) <

When the binary sensitive attribute is in the form A € {0, 1}, this gives us
an inequality system:

po(h) = p(h) <0
fe(h) — po(h) <0
i (h) = () <0
f(h) — pa(h) <0
Ho,y, () = sy, (h) <0
[y, (R) = o, () <0
1y () — ey () < 0
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:U/*,yp (h) - IU“I,yp (h> S O

We can compactly express this constraint system as:

Mo(h)
pa(h)
: T i+ (R)
Mu(h) <e, with e=[0 --- 0] eR® puh) = , and
M( )— [ } N( ) /LO,yp(h)
/’Llyyp<h)
M*yl]p(h)
1 0 -1 0 0 O]
-1 0 1 0 0 0
0 1 -1 0 0 0
0 —1 1 0 0 0
M= 0 0 0 1 0 -1
0 0 0 -1 0 1
0 0 0 0 1 -1
| 0 0 0 0 —1 1]

After defining the fairness constraints as linear inequalities over condi-
tional moments, we can now move to the optimization procedure. We intro-
duce a general form of the Exponentiated Gradient algorithm of Agarwal et
al. [32], which was first made for binary classification tasks and for only one
fairness constraint. Our updated version supports both binary and multi-
class classification tasks in the presence of multiple fairness constraints.

3.3. Generalized Exponentiated Gradient (GEG)

In this part, we provide a detailed description of the Generalized Ex-
ponentiated Gradient (GEG) method, an in-processing bias mitigation algo-
rithm aimed at achieving fairness both in binary and multi-class classification
tasks under multiple fairness definitions.

The primary goal of our approach is to find a classifier that yields the
highest possible fairness while still being effective in its predictions, as for-
malised in the optimisation problem [T} Since the hypothesis space H is not
convex and the loss function is not continuous, the direct optimisation of
this problem faces significant computational challenges, which may lead to
convergence issues, meaning the absence of an optimal solution. To address
these difficulties, we adopt the method of Agarwal et al. [32] and rewrite the

12
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problem in terms of random classifiers, given as distributions @) € A(H) over
the hypothesis class. This relaxation transforms the original optimization
problem into a convex one, allowing us to utilize efficient convex optimiza-
tion methods. Thus, there is a solution to this problem that can be written
as

Q?K&)R(Q) subject to  v(Q) <€, fori=1,...,n, (15)
where A(#H) is the set of all probability distributions over H, R(Q) =
Y nen @(h) R(h) is the expected classification error under the randomized
classifier @, and 7;(Q) = >_,cqy @(h) vi(h) is the i-th expected fairness mo-
ment.

In a real-world scenario, we have access only to a finite training set and
not the whole distribution of (X, A,Y’). Thus, we obtain estimates for the
expectations by taking averages over the sample at hand, and we allow for
a bit slack € in the constraint violations. In addition, the random classifier
() can be expressed as a sparse distribution on a set of predictors learned
during training.

This brings us to the following approximation problem:

Q?K&)R(Q) subject to 7;(Q) <€, i=1,...,n, (16)
where 7%(@),%(@) are learnt over the training samples, the tolerance con-
stants €; are allowed to adapt at every learning iteration.

To solve the optimization problem (16|, we reformulate it as a saddle-
point problem using a Lagrangian approach. This transformation enables the
use of duality principles from convex optimization and supports the design of
efficient iterative algorithms. Specifically, we define the Lagrangian function:

LIQ.A) =R(Q) + DN (3(Q) — @), (17)
i=1
where A = (A1, Ag,...,\,) are the non-negative dual variables (Lagrange

multipliers) associated with the fairness constraints.
The optimization problem is thus transformed into the following min-max
saddle-point problem:

i LIO.N). 18
QEA(H) A50 (@, A) (18)

13
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As a way to make the optimization problem more stable and better behaved,
we restrict the dual domain by adding an ¢;-norm constraint on A. The
resulting saddle-point formulation is:

i L A). 19
Qg&)Azoﬂi)\ligB (@A) (19)

According to Sion’s minimax theorem [34], a solution to this problem is guar-
anteed to exist, since £(Q), A) is linear in both arguments and the domains
of @ and X are convex and compact (the dual compactness is ensured by the
¢1-norm bound).

To find this saddle point, we follow the strategy used by Agarwal et al. [32],
which frames the problem as a zero-sum game between two players. The
learner, who selects a randomized classifier Q) € A(H) to minimize the clas-
sification loss while satisfying fairness constraints, and the auditor, who up-
dates the dual variables A to maximize the Lagrangian by penalizing con-
straint violations.

At each iteration, the learner constructs a new classifier h; € H by solving a
cost-sensitive classification problem. This problem is formulated by assigning
to each training sample (z;, a;, yj)j-vzl a signed weight w§t) that combines two
key components: the classification objective and the fairness constraints.
Formally, we define:

t rror t ir
wy = DN Al
i=1

where 75" € {+1,—~1} encodes the misclassification cost with respect to
the target class y,, defined as:

error __ +1 lf yj 7é yp’
J -1 it y; =y,

and

Z?j
observation j to the violation of the i-th fairness constraint. The scalar )\Z@
represents the Lagrange multiplier associated with this constraint at iteration
t

The sign of w](-t) determines the target label in the cost-sensitive classification.

The adjusted label yj](-t) is then set as:

= 7;(h(x;)) denotes the individual (per-sample) contribution of

14
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jo _ Jw w0,
I y; otherwise.

The learner then solves the following cost-sensitive optimization problem:
_ : ®) .
hy = arg %Iél;[lz lw;”| 1{h(xj)¢g;”}'
j

Then, the auditor updates the dual variables AW by computing:

\o_ _ Bexp(8”)

= , foralli=1,... ,n.
L+ She exp(6))

In practice, the update of oY may also involve a learning rate or smoothing
strategy to stabilize optimization, as implemented in our algorithm. This
formula ensures that A® lies in the scaled probability simplex of radius B,
emphasizing the most violated constraints.

The process converges to an approximate saddle point (Q*, A*), which rep-
resents a randomized classifier that achieves an optimal balance between
predictive performance and fairness. The resulting distribution Q)* is sparse,
supported on a small number of base classifiers h;, and is normalized to form
a valid probability distribution over the hypothesis class. The final weights
A* provide insight into the most influential fairness constraints.

The optimization process stops when the duality gap falls below a small
threshold v, indicating that the current solution is close to a saddle point.
The duality gap is computed as the difference between the Lagrangian value
of the best single classifier and that of the current mixture Q:

Gap(Q,A) = max L(h,X) — L(Q, \).

heH

When this gap becomes sufficiently small, no further improvement is ex-
pected, and the optimization terminates.
This entire procedure is formally presented in Algorithm [}
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Algorithm 1 Generalized Exponentiated Gradient (GEG)

Require: Training data (X, A,Y) with Y € {0,1,..., K}, positive class y,
1: Hypothesis class H, fairness constraints {7;}?_; with thresholds {¢;}1,
2: Parameters: learning rate n > 0, tolerance 0 > 0, max iterations T,

duality gap threshold v > 0, minimum iterations ¢, € N.

Ensure: Randomized classifier Q € A(H)

3: Initialize dual variables: 8 < 0, count vector @ < ), budget B < 1/¢
4: fort =1to T do
B - exp(61”)

L+ 3 exp(6])
6: for each training sample 7 =1 to N do

5: Compute dual weights: )\Z(t) —

7: Compute signed weight: w](-t) AT )\Et) . %fz.ir
if wl? >0
8: Adjust label: g; < {7 "% °
y; otherwise
t
. . 0 N - |w§)‘ .
9: Normalize weights: w;” « =" 0 for all
D k=1 Wk
10: end for
11: Train classifier b, on {(z;, g;, w](-t)) X
122 Update count: Q[h] < Q[he + 1
13: Compute constraint violations: 7;(h:)
14: Update dual: 9§t+1) — QZ@ +n-(Fi(h) — &)
h
15: Compute current mixture: Q¢(h) < e for all h

2w Q)
16: Compute duality gap: Gap, < maxpey L(h,A) — L(Q¢, A)
17: if Gap, < v and t > t,,;;, then
18: break
19: end if
20: end for
Q(h)

21: Normalize final distribution: Q(h) <+ —=———~ forall h € H
2w Q)

22: return

w0 3.4. Implementation Details

370 We implemented GEG in Python 3.9 by extending the EG implementa-
sn tion provided by the Fairlearn Python library [35]. In all the experiments
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reported in Section , we set 1 to 107° and 6 to 0.05. We provide the im-
plementation of GEG and the evaluation scripts online for public use and
research [16].

4. Evaluation

In this section, we describe the empirical evaluation conducted to assess
the effectiveness of GEG. Specifically, our evaluation is driven by the follow-
ing research questions (RQ):

RQ,

RQ,

RQs

RQ4

Multi-class classification: To what extent is GEG able to mitigate
bias while keeping a high prediction effectiveness in a multi-class clas-
sification context?

This RQ acts as a “sanity check” and benchmarks the ability of GEG
in mitigating bias while keeping high prediction effectiveness against a
base-classifier in the multiclass classification context.

Binary classification: To what extent is GEG able to mitigate bias
while keeping a high prediction effectiveness in a binary classification
context?

In addition to the multiclass classification context, we benchmark GEG
against a base classifier employed in the binary classification context.

Baseline comparison: How does GEG compare against existing bias
mitigation methods in the multi-class classification tasks?

In this RQ, we benchmark GEG against the Debiaser for Multiple
Variables (DEMYV) pre-processing approach, which is, to the best of
our knowledge, the main approach proposed for bias mitigation in the
multi-class classification context [23].

Different base classifiers: How does GEG perform under different
base-classifiers?

Finally, this RQ evaluate the extent in which GEG can be effectively
employed with different base-classifiers in the multi-class classification
context.

In the following, we describe in detail the datasets employed (Section,
the metrics used in the evaluation (Section [£.3), and the overall evaluation

process (Section [4.2)).
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Table 1: Employed Datasets

Name

Sens. Attribute ‘ Instances ‘ Features ‘ Classes ‘ Class Distr.

1: 42.7%
CMC [30] religion 1473 10 3 2: 22.6%

3: 34.7%
100: 23.8%
200: 15.8%
Crime [37] race 1,994 100 6 300: 21.2%
400: 19.9%
500: 19.3%
: 21.9%

0 25.1%
1 52.9%

0 41.6%
2 27.9%
: 31L.1%

1 19.3%
0 19.5%
0 19.4%
: 23.5%
0 18.2%

: 30.0%
: 44.6%
1 24.9%

4: 3.4%
0 34.1%
: 45.3%

17.2%
2 75. 7%

1 24.2%
: 54.4%
COMPAS [g] | race 6,167 399 2 1 45.5%

0: 30%
1: 710%

T
=
)

~ S

Drug [38] race 1,885 15 3

I SS)

Law [3] gender 20,427 14 3

N = D

o~

Obesity [39] | age 1,490 17 5

o

[ I

Park [40] age 5,875 19 3

2o M~

Wine [1] type 6,438 13 4

S Ov

Adult [42] sex 30,940 102 2

~

German (3] | sex 1,000 59 2

4.1. Datasets

Table 1| reports the list of datasets employed in our study. For each
dataset, we report its name, the sensitive attribute as reported in the cor-
responding source paper, the number of instances and features, the number
of possible classes to be predicted, and their distribution. The datasets have
been selected based on their relevance, diversity, and adoption in previous
fairness studies [23| 44, [45]. Specifically, to answer RQ;, RQjs, and RQy, we
employ the following seven multi-class datasets:
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. Contraceptive Method Choice (CMC) [36]. This dataset contains

1,473 instances and 10 features about the adoption of contraceptive
methods by women in Indonesia. The sensitive feature is religion and
the positive outcome is 2 (long-term use).

. Communities and Crime (Crime) [37]. This dataset includes 1,994

instances and 100 features about the per-capita violent crimes in U.S.
communities. The sensitive feature is race and the positive outcome is
100 (low rate of crimes).

. Drug Usage (Drug) [38]. This dataset includes 1,885 instances and

15 features about the frequency of drug consumption. The sensitive
attribute is race and the positive class is 0 (never use).

. Law School Admission (Law) [3]. This dataset contains 20,427

samples and 14 features about admissions scores to a law school. The
sensitive attribute is gender and the positive outcome is 2 (high admis-
sion score).

. Obesity Estimation (Obesity) [39]. This dataset contains 1,490

instances and 17 features about patients’ obesity estimation. The sen-
sitive feature is age and the positive class is 0 (no obesity).

. Parkinson’s Telemonitoring (Park) [40]. This dataset includes

5,875 instances and 19 features about patients affected by Parkinson’s
disease, measured with the Unified Parkinson’s Disease Rating Scale
(UPDRS) classification. The sensitive attribute is age and the positive
class is 0 (mild class).

. Wine Quality (Wine) [41]. This dataset includes 6,438 instances

and 13 features about wine quality classification. The sensitive feature
is wine type and the positive outcome is 6 (high quality class).

We employ instead the following binary datasets to answer the RQs of
our study:

1. Adult Income (Adult) [42]. This dataset comprises 30,940 instances

and 102 features related to the income of people in the U.S. The sensi-
tive attribute is sez and the positive outcome is 1 (high income class).
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2. ProPublic Recidivism (COMPAS) [§]. This dataset contains 6,167
samples and 399 features (one-hot encoded) about the recidivism pre-
diction of condemned people. The sensitive feature is race and the
positive class is 0 (no recidivism).

3. German Credit (German) [43]. This dataset includes 1,000 in-
stances and 59 features about the classification of people as good or
bad credit risk. The sensitive attribute is sex and the positive outcome
is 1 (good credit risk).

4.2. Benchmarks

To answer the RQ; and RQ5 of our study, we compare the fairness and
effectiveness of GEG with those of a Logistic Regression (LR) classifier. We
have chosen this model because it has been successfully applied in previous
fairness studies and in multi-class classification tasks [I8, 23]. To ensure a
fair comparison, the same LR model is used as a base-classifier for GEG.
Specifically, concerning RQ;, we employ three versions of GEG, each one
adopting a different fairness constraint during the optimisation process: one
version uses a Statistical Parity constraint (GEG-SP), another version em-
ploys the Equalised Odds constraint (GEG-EO), and the last version uses a
Combined Parity constraint, optimising for both SP and EO at the same time
(GEG-CP). Instead, concerning RQs, since the implementation of GEG-SP
and GEG-EO for binary classification is equal to the already existing EG
approach from Agarwal et al. [I5], we consider these methods as additional
baselines. Therefore, we compare these results with those of GEG-CP, which
is our novel contribution for binary classification.

Concerning RQj3, we compare the three versions of GEG (i.e., GEG-SP,
GEG-EO, and GEG-CP) with the Debiaser for Multiple Variables (DEMV)
approach, which is, to the best of our knowledge, the main approach proposed
for bias mitigation in multi-class classification [23]. It is a pre-processing
method that balances the dataset such that all the sensitive groups are
equally represented. As for the first two RQs, we employ an LR model
as a base classifier.

Finally, for RQ4, we benchmark the three versions of GEG against a
Random Forest (RF) and a Gradient Boosting (GB) classifier. The choice
for these models is still driven by their adoption in previous fairness studies
and multi-class classification tasks [I8, 23]. As with the other RQs, to ensure
a fair comparison, we use the same base classifiers for GEG.
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For all ML models, we use their implementation available in the scikit-
learn Python library, with their default hyperparameters [46]. For DEMV,
we employ the implementation available in the paper [23] with its default
hyperparameters.

4.8. FEvaluation Metrics and Methods
4.3.1. Metrics

We employ a heterogeneous set of metrics to evaluate the fairness and
effectiveness of the approaches analysed in each RQ.

Concerning effectiveness metrics, following previous studies [44, 47], we
employ the following metrics:

e Accuracy. This metric is defined as the percentage of correct predic-
tions over the total predictions of a model:

N
1 .
Accuracy =5 Z; 1y = v)
where N is the total number of samples, ¢; and y; are the i-th true and
predicted samples, and 1(y; = ;) is a function which is equal to 1 if
the prediction is equal to the true label and 0 otherwise. It ranges from
0 to 1, where 1 is the highest score [4§].

e Macro Precision. This metric is an adaptation of the Precision score
for the multi-class classification context [49]. It is defined as the un-
weighted average of the class-wise precision score:

K
Macro Precision =— Precision
e & Precions
where K is the number of classes and Precisiony, is the ratio of correctly
predicted k class over all k predictions [49]. Tt ranges from 0 to 1, where

1 is the highest score.

e Macro Recall. Like Macro Precision, this metric is an adaptation
of the Recall score for multi-class classification [49]. It is defined It is
defined as the unweighted average of the class-wise recall score:

K
1
Macro Recall :? Z Recally,

i=1
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496 where K is the number of classes and Recall;, is the ratio of instances
407 of the k class identified by the model [49]. It ranges from 0 to 1, where
408 1 is the highest score.

e Macro F1 Score. This metric is defined as the harmonic mean be-
tween Macro Precision and Macro Recall [49]:

Macro F1 Score =2 X Macro Precision x Macro Recall

Macro Precision + Macro Recall

499 it ranges from 0 to 1, where 1 is the best score.
500 Concerning fairness, we consider three widely adopted fairness definitions
501 [23, 44, 18]:

e Statistical Parity Difference (SPD). This metric implements the
Demographic Parity fairness definition defined in Definition |1 It mea-
sures fairness as the difference in the probability of having the positive
outcome (y,) predicted, being in the privileged group or not [26]. It is
defined as:

SPD = Pr(§ = yp|A = 0) = Pr(j = y|A = 1)

502 where A = 0 and A = 1 are the unprivileged and privileged groups,
503 respectively. This metric ranges from -1 to 41, and the closer to 0, the
504 fairer the model.

e Equal Opportunity Difference (EOD). This metric assesses fair-
ness as the difference in the probability of having the positive outcome
predicted conditioned on the value of the true label, being in the priv-
ileged group or not [28]. It is defined as:

EOD=Pr(y=vyly=vyp,A=0)—Pr(g=y,ly =yp, A= 1)

505 this metric ranges from -1 to +1, and the closer to 0, the fairer the
506 model.

e Average Odds Difference (AOD). This metric implements the Fqual-
ized Odds fairness definition shown in Definition 2l It measures fairness
as the difference between true positive (TPR) and false positive (FPR)
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rates, concerning the positive outcome, for items being in the privileged
and unprivileged groups. Formally, it is defined as:

1
AOD 25((FPRA:0 - FPRAzl) + (TPRA:() — TPRAzl))

like the other fairness metrics, this one ranges from -1 to +1, where the
closer to 0, the fairer the model.

Following previous works [47, [44] 23], we consider absolute values of SPD,
EOD, and AOD to have a clearer understanding of the fairness improvement
in a model.

4.3.2. Methods

To mitigate the risk of data selection bias, for each RQ, we perform a
10-fold cross-validation with shuffling. For each fold, we train the models
on the training set and compute the fairness and effectiveness metrics on
the testing set. To ensure a fair evaluation, we use the same splits for all
approaches in each RQ by fixing the random seed. Additionally, when we
evaluate DEMV for the RQ3, following the original paper [23], we apply the
pre-processing approach only on the training set.

After training and testing the approaches, we report the mean and stan-
dard deviation of the metrics obtained. Moreover, we employ the non-
parametric one-sided Wilcoxon signed-rank test to assess the statistical sig-
nificance of the difference between the metrics obtained by baselines and
GEG. The Wilcoxon test is a non-parametric test that verifies the null hy-
pothesis that the median between two dependent samples is different [50].
Being non-parametric, it raises the bar for significance by making no assump-
tions about the underlying samples. Specifically, the null hypothesis we check
is "Hy : The objective O obtained by GEG is not improved with respect to the
baseline approach x”. The alternative hypothesis is: "H; : The objective O
obtained by GEG is improved with respect to the baseline approach x”. For
effectiveness metrics “improved” means that the score obtained by GEG is
higher than the baseline. On the contrary, for fairness metrics “improved”
means that the score obtained by GEG is lower than the baseline. Following
standards [51, 52], we set the confidence value to 0.05. Therefore, we reject
the null hypothesis if the test’s p-value is < 0.05.
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Table 2: RQi: Results for Multi-Class Classification against an LR Baseline. Winning
cases are highlighted in blue , losing cases are highlighted in lorange . Best fairness scores
are highlighted in bold.

Approach H Acc Prec Rec F1 ‘ SPD EOD AOD
LR 0.606+0.033 0.583£0.037  0.56£0.032  0.55340.033 | 0.115+0.066 0.1784+0.129 0.116+0.076
LZ) GEG - SP || 0.6024+0.028 0.5754+0.032 0.556+£0.026 0.549+0.027 | 0.015+0.057 0.045+0.147 0.02+0.063
O GEG - EO || 0.601+0.034 0.5744+0.038 0.56+0.031 0.557+0.032 | 0.028+0.045 0.01+0.171 0.007+0.076
GEG - CP 0.6064+0.03  0.57640.038 0.561+0.032 0.556£0.034 | 0.05840.062 0.05740.162 0.04240.087
© LR 0.47440.037  0.434+£0.046 0.4524+0.032 0.4274+0.037 | 0.382+0.062 0.26640.288 0.24740.146
g GEG - SP 0.4064+0.04  0.403£0.035 0.397£0.038 0.3924+0.035 | 0.028+0.048 0.056+0.174  0.072£0.07
S GEG - EO | 0.333£0.077 0.414+0.107 = 0.307+0.081  0.246+0.11 0.128+0.111 0.074£0.234  0.066+0.136
GEG - CP || 0.355+£0.031 0.373£0.031 0.333£0.029 0.315£0.033 | 0.087+0.065  0.118+0.213  0.06+0.103
) LR 0.687+0.023 0.618+0.033 0.614+0.018 0.611+£0.025 | 0.21340.125 0.27640.181 0.177+0.1
éﬂ GEG - SP || 0.683+0.025 0.613£0.031 0.606+£0.024 0.604£0.026 | 0.021+£0.093 0.087+0.179  0.058+0.088
A GEG - EO || 0.667£0.029 0.58440.039 0.586+0.027 0.576+0.031 | 0.043+0.118 0.09+0.262 0.034+0.141
GEG - CP || 0.684+0.028 0.609£0.029 0.606+£0.023  0.640.024 0.066+£0.121  0.03+£0.164 0.012+0.101
LR 0.666+0.015  0.64+0.016 0.652+0.014 0.644+0.015 | 0.083+0.019  0.0394£0.048  0.051+0.025
£ GEG-SP | 0.67920.008 0.653+0.007 | 0.667=£0.008 0.655-£0.007 | 0.011:0.022  0.014=:0.048 0.016+0.03
—~  GEG - EO || 0.67£0.018 0.6454+0.016 0.657+0.016 0.648+0.015 | 0.039£0.019 0.003+0.038  0.009=£0.02
GEG - CP || 0.6924+0.017 0.666-0.018 0.68£0.018 0.664+0.015 | 0.038+0.021  0.009+0.039 0.002+0.019
.. LR 0.6684+0.044 0.654+0.046 0.665+£0.033 0.651£0.038 | 0.049+0.043 0.012+0.119 0.011+0.067
5 GEG - SP || 0.654+0.042 0.636+£0.041 0.653+0.03  0.634+0.037 | 0.002+0.063  0.109+0.117  0.062+0.072
8 GEG - EO || 0.621+0.054 0.612+0.05 = 0.619-£0.046 0.604+0.051 | 0.037£0.08 0.05440.12 0.0184+0.088
GEG - CP 0.6624+0.04  0.656+0.035 0.659+0.03  0.646+£0.031 | 0.04140.048 0.025+0.151 = 0.007+0.084
LR 0.4734+0.02  0.33£0.039  0.402+0.014 0.351+£0.017 | 0.21440.072 0.323£0.127  0.232+0.081
’g GEG - SP || 0.4774+0.025 0.43840.073 0.407£0.017 = 0.369+£0.025 | 0.004+0.055 0.074+0.102 0.01140.066
A~ GEG - EO || 0.4434+0.033  0.43540.025 0.4374+0.028 0.4314+0.029 | 0.015+0.05 0.014+0.068 0.007+0.051
GEG - CP 0.45440.02  0.431+£0.024 0.423£0.024 0.42£0.025 | 0.042+£0.037  0.045%0.098 0.03240.048
LR 0.45440.019 0.246+0.062 0.259£0.006 0.201+£0.012 | 0.11540.046 0.10540.062 0.11540.048
£ GEG-SP || 0.45540.014 0.281-£0.095 0.265--0.008 0.22-£0.013 | 0.009+£0.027  0.008+0.029  0.006-:0.026
Z GEG-EO || 0.43940.012 0.232:£0.078 0.25140.007 | 0.177-£0.023 | 0.002+0.031  0.018£0.045  0.004=-0.034
GEG - CP || 0.45+0.014  0.26+0.046  0.254£0.006 = 0.182+0.015 | 0.002+0.027 0.006+0.035 0.002+0.028
5. Results

In the following, we report the results of our empirical evaluation. In each
table, we report in blue the winning cases (i.e., Wilcoxon p-value < 0.05 with
respect to the baseline(s)), while we highlight in 'orange the losing cases
(i.e., Wilcoxon p-value > 0.95 with respect to the baseline(s)). Additionally,
for each dataset analysed, we highlight the best fairness score (i.e., the one
closest to zero) in bold.

5.1. RQy: Multi-class classification.

Table [2| reports the results of the comparison of the fairness and effective-
ness obtained by the three versions of GEG and the baseline LR model.

From the table, we observe how all versions of GEG significantly improve
the fairness of the base classifier under all datasets and fairness definitions
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considered. The only dataset in which we do not see a significant improve-
ment under all fairness definitions is Obesity, where the bias of the base
LR classifier is also low. Surprisingly, the improvement in fairness does not
always come at the cost of reduced effectiveness. In fact, only in Crime
and Obesity we observe a significant reduction in all effectiveness scores by
specific versions of GEG. This reduction could be explained by the higher
number of classes in these two datasets (6 and 5, respectively; see Table ,
which may make the overall prediction task more complex for the model. We
also observe a reduction in effectiveness by the GEG-EO model for the Drug
dataset. Nevertheless, even if statistically significant, the loss in effective-
ness is not large, with a maximum loss in accuracy of 0.14 points concerning
GEG-EO with the Crime dataset. Indeed, with the Law, Park, and, par-
tially, Wine datasets, we observe a statistically significant improvement also
in effectiveness scores compared with the base LR classifier.

Finally, from the fairness scores in Table [2| we do not observe a clear
winner among the three versions of GEG employed. This means that all three
versions are effective in bias mitigation under all fairness definitions analysed.
Notably, all versions of GEG achieve statistically significantly better results
also under the AOD fairness definition, which is not directly optimised by
the model.

Answer to RQ;: GEG significantly improves the fairness of an LR classifier
under multiple multi-class datasets and fairness definitions. The improvement
in fairness achieved by GEG does not come with a high cost in effectiveness.
Indeed, the effectiveness in predictions obtained by GEG is even higher than
the LR model in 3 out of 7 datasets.

5.2. RQy: Binary Classification

Table |3 reports the fairness and effectiveness achieved by GEG for binary
classification. We recall that, in this context, our novel contribution is the
extension of the original EG approach from Agarwal et al. [15] with the CP
constraint (GEG-CP in Table 3)).

From the table, we observe that GEG-CP is the approach achieving the
best fairness results in 8 out of 9 cases analysed (89%). Notably, GEG-CP is
also the only approach achieving statistically better results under AOD with
the German dataset. However, this improvement in fairness comes at the cost
of reduced effectiveness (especially Recall and F1 Score). This result suggests
that GEG-CP tends to produce fewer positive outcomes across all groups.
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Table 3: RQo: Results for Binary Classification against an LR model and the base EG
approach from Agarwal et al. Winning cases are highlighted in blue , losing cases are
highlighted in 'orange . Best fairness values are highlighted in bold.

Approach H Acc Prec Rec F1 ‘ SPD EOD AOD
LR 0.827+£0.007 0.772+0.012 0.727£0.01  0.744+0.01 | 0.179£0.016  0.1544+0.048  0.119+0.026
EG - SP 0.825+0.006 0.774+£0.012 0.711%0.008 0.73240.009 | 0.077=£0.016 0.1340.071 0.05840.036

Adult

EG - EO 0.828+0.004 0.776£0.009 0.7254+0.005 0.7444-0.005 | 0.145£0.018  0.0514+0.075  0.055+0.038
GEG - CP || 0.76940.005 0.739£0.025 0.535+0.007 0.506+0.013 | 0.00840.007 0.012+0.031 0.009-+0.017

LR 0.675+£0.021  0.675£0.02  0.666+0.02  0.666+0.021 | 0.174+£0.04 0.102+0.031 0.15+0.042

g EG - SP 0.6754+0.022  0.67540.021 0.66640.021 0.666+0.022 | 0.0494+0.071 0.014+0.069 0.023+0.068
g EG - EO 0.669+0.018  0.66940.018  0.66+£0.017  0.66+0.017 | 0.03140.055  0.026£0.041 0.005+0.058
GEG - CP || 0.611£0.031 0.695+0.028 0.57840.025 0.52£0.049 | 0.001+0.072 0.014+0.051 0.01940.073
= LR 0.74540.044  0.69340.063 0.6614+0.058  0.669+0.06 0.21£0.108 0.18240.17 0.1740.13
g EG - SP 0.745£0.062 0.694+£0.088  0.66+£0.071 0.6684+0.077 | 0.067£0.147  0.075+0.158  0.037£0.178
S EG - EO 0.748+0.056  0.69840.079 0.66440.067 0.67240.072 0.140.169 0.088+0.189  0.059+0.194

GEG - CP || 0.708+0.051 0.613+£0.193 ' 0.528+0.029 0.479+0.056 | 0.022+0.047 0.016+0.028 0.029+0.058

Therefore, practitioners can choose to adopt GEG-CP in use cases where a
reduction in positive outcomes is acceptable to achieve higher fairness (e.g.,
in use cases protected by specific regulations).

Answer to RQs: In the binary classification context, GEG-CP achieves the
best fairness reduction in 88% of the cases analysed compared to baselines.
However, this improvement comes at the cost of a reduced ability of the model
to deliver positive outcomes.

5.3. RQ)3: Baseline Comparison

Table [4] shows the results of the comparison between the three versions
of GEG and the DEMYV baseline for multi-class classification.

We observe how GEG achieves the best fairness scores in 20 out of 21
cases analysed (95%). The improvement achieved by GEG is also statistically
significant in the Crime, Law, Park, and Wine datasets. Additionally, the
effectiveness achieved by GEG is mostly comparable with that achieved by
DEMV. Specifically, we observe how GEG-EO and, partially, GEG-CP tend
to provide statistically significantly lower Precision, Recall and, consequently,
F1 Score, under specific datasets (namely Crime, Drug, Obesity, and, par-
tially, Wine). However, this decrease is observed primarily in datasets with
a high number of classes or a high class imbalance (see Table . In fact,
this reduction in Precision and Recall does not impact Accuracy in a sta-
tistically significant manner. On the contrary, GEG-SP provides consistent
effectiveness across all datasets, whereas all versions of GEG show a con-
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Table 4: RQ3: Comparison with the DEMYV pre-processing approach for multi-class clas-
sification. Winning cases are highlighted in blue , losing cases are highlighted in 'orange .

Best fairness values are highlighted in bold.

Approach H Acc Prec Rec F1 SPD EOD AOD
DEMV 0.601+0.024 0.581£0.036  0.55+£0.018  0.542+0.02 0.056+0.044 0.053+0.163 0.036+0.065
C‘Z) GEG - SP || 0.602+0.028 0.575+0.032 0.556+0.026 0.549+0.027 | 0.015+0.057  0.045+0.147 0.0240.063
O GEG - EO | 0.601£0.034 0.574+0.038 0.56+0.031  0.557+0.032 | 0.02840.045 0.01+0.171 0.007+0.076
GEG - CP || 0.606+£0.03 0.576+0.038 0.561£0.032 0.556+0.034 | 0.058+0.062  0.057+0.162  0.042+0.087
° DEMV 0.45140.032 0.406£0.046 0.42940.021 0.398+0.031 | 0.32440.053 0.22440.268 0.19940.121
E GEG-SP 0.406+0.04  0.403+0.035 0.397+0.038 0.392+0.035 | 0.028+0.048 0.056+0.174  0.072+0.07
5 GEG - EO | 0.333+0.077  0.414+0.107 = 0.307£0.081  0.246=£0.11 0.128+0.111 0.0744+0.234  0.066-+0.136
GEG - CP || 0.355+0.031 0.373+0.031 0.333£0.029 0.31540.033 | 0.087£0.065 0.1184+0.213 = 0.06+0.103
) DEMV 0.687+0.029 0.624+0.039  0.61£0.028 0.61240.031 0.098+0.1 0.039+£0.157  0.03340.093
? GEG - SP || 0.683+0.025 0.613+0.031 0.606+0.024 0.604+0.026 | 0.021+0.093  0.087+0.179  0.058+0.088
A GEG-EO || 0.667+0.029  0.584+0.039 0.586=£0.027 0.576+0.031 | 0.043+0.118 0.09+0.262 0.034+0.141
GEG - CP || 0.684+0.028 0.609+0.029 0.606+0.023  0.640.024 0.066+0.121  0.03+0.164 0.012+0.101
DEMV 0.66940.019  0.6454+0.019 0.6584+0.019 0.649+0.019 | 0.063+0.01 0.0240.045 0.0340.023
;% GEG - SP 0.679+0.008 0.653+0.007 0.667+0.008 0.65540.007 | 0.011+0.022 0.01440.048 0.01640.03
= GEG-EO || 0.67+0.018 0.645+£0.016 0.657+£0.016 0.648+0.015 | 0.039£0.019 0.003+0.038 = 0.009+0.02
GEG - CP || 0.692+£0.017 = 0.666+0.018 0.68+0.018 0.664+0.015 | 0.038=+0.021 0.0094+0.039  0.002-£0.019
.. DEMV 0.6614+0.044 0.6554+0.041  0.66+0.036  0.648+0.039 | 0.05+£0.047  0.014+0.159  0.014+0.087
? GEG - SP 0.654+0.042 0.636+£0.041  0.653+0.03  0.634+0.037 | 0.002+0.063  0.109+0.117 0.06240.072
5" GEG - EO | 0.621+0.054 = 0.612+0.05 0.619+0.046 0.604+0.051 | 0.037+0.08 0.05440.12 0.018+0.088
GEG - CP 0.6624+0.04  0.656+0.035 0.65940.03  0.6464+0.031 | 0.041+0.048 0.025+0.151  0.007+0.084
DEMV 0.4664+0.018  0.41440.088 0.394+0.016 0.349+0.022 | 0.1554+0.063  0.224+0.124  0.163+0.072
é GEG - SP || 0.477+0.025 0.438+0.073 0.407£0.017 0.369£0.025 | 0.004+0.055 0.074+0.102  0.011£0.066
A GEG - EO || 0.44340.033 0.43540.025 0.43740.028 0.43140.029 | 0.015£0.05 0.014+0.068 0.007-+0.051
GEG - CP || 0.454£0.02 0.431+0.024 0.423£0.024 0.42+0.025 | 0.042+£0.037  0.0454+0.098  0.032+0.048
DEMV 0.453+0.015  0.26+0.084  0.259+0.006 0.20440.011 | 0.143+0.057 0.13240.068 0.14340.058
E GEG - SP || 0.455+0.014 0.281+0.095 0.265£0.008 0.22+0.013 | 0.009£0.027  0.0084+0.029  0.006+0.026
= GEG-EO | 0.439+0.012 0.23240.078 0.251+0.007 0.177+0.023 | 0.00240.031  0.018=+0.045 0.004+£0.034
GEG - CP || 0.454+0.014  0.264+0.046  0.254+0.006 ~0.182+0.015 | 0.002+0.027 0.006+0.035 0.002-0.028

se0  sistently, and even statistically significantly, larger effectiveness in datasets
with a more balanced label distribution.
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5.4. RQy: Different Base Classifiers

Table [5| presents the results of applying GEG with an RF classifier. We
o4 Observe that the RF classifier generally demonstrates higher predictive per-
formance compared to the LR model. Concerning fairness, in all use cases,

27

Answer to RQjs: GEG achieves better fairness scores than DEMYV in 95%
of the cases analysed. Regarding effectiveness, GEG-SP provides consistent, or
even statistically significantly better scores than DEMV. On the contrary, GEG-
EO and, to a lesser extent, GEG-CP may struggle more with datasets with a
high number of classes or high class imbalance.
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Table 5: RQ4: Results obtained with RF base classifier. Winning cases are highlighted
in blue , losing cases are highlighted in lorange . Best fairness scores are highlighted in
bold.

Approach H Acc Prec Rec F1 ‘ SPD EOD AOD
RF 0.984+0.015  0.97940.016 0.977+0.017 0.978+0.017 0.13640.08 0.02240.087  0.012+0.045
C‘Z) GEG - SP || 0.868+0.022 0.869+0.02  0.8824+0.02  0.86+0.025 | 0.029+0.092 0.015+0.083  0.058+0.068
O GEG - EO || 0.984+0.009 0.9854+0.008 0.981+0.01  0.983+0.009 | 0.14140.084 0.03440.078 0.0194-0.04
GEG - CP || 0.794+0.041 0.833+0.022 0.833+£0.032 0.79+0.043 0.0440.16 0.01£0.062  0.036+0.083
° RF 0.499+0.031  0.471+0.03  0.478+0.025 0.466+0.027 | 0.413+0.069 0.48340.232 0.355+0.14
E GEG-SP 0.4374£0.04 0.441+0.033 0.411£0.022 0.395+0.03 | 0.155+0.055 0.307+0.244 0.139+0.124
5 GEG - EO || 0.507+0.036 0.4734+0.036 0.484+0.029 0.47+0.034 0.424+0.061 0.497+0.194 0.367+0.117
GEG - CP || 0.415£0.04 0.442+0.032 0.386+0.03 0.364+0.036 | 0.1940.046 0.3794+0.226 | 0.197+£0.113
_ RF 0.676+0.032  0.60640.033 0.5974+0.027 0.597+0.028 | 0.1434+0.125  0.1774£0.194  0.108+0.128
? GEG - SP || 0.598+0.034 0.544+0.034 0.547+0.032 0.531£0.028 | 0.029+0.11  0.1324+0.201 ~ 0.024=+0.108
A GEG-EO || 0.676+£0.019 0.605+0.029 0.598+0.025 0.59740.025 | 0.179+£0.099  0.2114+0.141  0.142+0.087
GEG - CP || 0.647+0.022 0.574+0.034  0.58+0.02 = 0.544+0.034 | 0.046+0.121 = 0.101+0.175 0.011+0.104
RF 0.9694+0.006 0.9714+0.005 0.974£0.006  0.9740.005 | 0.1624+0.024  0.151£0.053  0.079+0.026
;% GEG - SP 0.951£0.007 0.95240.006 0.954+0.006 0.953+£0.006 | 0.027+0.021 0.126+0.048  0.015+0.023
—  GEG-EO || 0.974+0.005 0.972+0.004 0.971£0.005 0.971£0.005 | 0.159+0.024 0.1440.042 0.073+0.022
GEG - CP || 0.918+0.007 0.922+0.006 0.929-£0.006 0.923£0.006 | 0.087+0.026  0.1254+0.04  0.027+0.019
.. RF 0.92940.017 0.93440.013 0.9284+0.018 0.927+0.016 | 0.06440.058  0.018+0.055 0.0+0.032
? GEG - SP 0.901+0.031 0.91640.024  0.9£0.031 0.9£0.031 0.012+0.07 0.02540.055 0.03440.045
5" GEG - EO | 0.931+0.013 0.935+0.011 0.929+0.013 0.929+0.012 | 0.0540.049 0.01940.035  0.009+0.028
GEG - CP || 0.926+0.016 0.9324+0.015 0.924+0.015 0.92440.015 | 0.061+£0.044 0.0024+0.062 0.006+0.036
RF 0.8534+0.014 0.86340.011 0.851+0.016 0.856+0.013 | 0.0134+0.035  0.205+0.076  0.084+0.043
é GEG - SP || 0.815+0.012 0.82440.01 0.814£0.014 0.817£0.012 | 0.058+0.036  0.2184+0.062 = 0.138+0.039
A GEG-EO | 0.85240.012 0.863+£0.01  0.84940.013 0.855+0.011 | 0.014+0.036 0.204+0.07 0.083+0.042
GEG - CP || 0.855+£0.01 0.865+0.007 0.853+0.013 0.858+0.01 | 0.008+0.047 0.2114+0.069 0.0940.043
RF 0.709+0.015  0.77+0.046  0.556+0.023 0.58940.031 | 0.122+0.036 0.09340.037 0.093£0.036
E GEG - SP || 0.708+0.012 0.731+0.086 0.548+0.025 0.579+0.036 | 0.067+0.041 0.064+0.031 0.041+0.041
Z GEG-EO | 0.709+£0.015 0.755+0.083  0.55+0.025 0.581+0.033 | 0.11940.051 0.09240.053 0.09140.049
GEG - CP || 0.707+0.012 0.726+0.077  0.5484+0.02  0.578+0.03 | 0.121+0.044  0.0914+0.039  0.093+0.044

at least one version of GEG achieves higher fairness scores than the RF base-
lines. However, it is important to note that this increase in fairness often
results in reduced effectiveness. This decline in effectiveness can be attributed
to the high effectiveness of the baseline RF classifier, which leads to a sys-
tematic trade-off: to enhance fairness, the overall effectiveness is typically
lowered [18, 53].

Similar results are observed when employing a GB base classifier, as
shown in Table []] Notably, the baseline GB model emerges as the most
effective and fair classifier among the three models analysed for multi-class
classification. However, GEG still mitigates bias significantly when the base
classifier’s bias is relatively high (as in the Crime dataset). Finally, we ob-
serve some cases in which the bias of GEG exceeds that of the baseline model
under the AOD definition. These issues can be explained by the low bias of
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Table 6: RQ4: Results obtained with GB base classifier. Winning cases are highlighted
in blue , losing cases are highlighted in lorange . Best fairness scores are highlighted in
bold.

Approach H Acc Prec Rec F1 ‘ SPD EOD AOD
GB 0.996£0.005 0.9954+0.006 0.996+0.005 0.9954+0.005 | 0.134+0.104  0.011+0.017  0.004+0.008
% GEG - SP || 0.86940.033 ' 0.877+0.027 0.886+£0.029 0.861£0.035 | 0.014+0.113 0.004+0.012  0.09+0.027
O GEG - EO || 0.996£0.005 0.995+0.006 0.99640.005 0.995+0.005 | 0.134£0.104  0.011£0.017  0.004+0.008
GEG - CP | 0.801£0.062 0.84440.033 0.841£0.042 0.798+0.062 | 0.0440.134 0.007+0.014 0.044+0.071
° GB 0.492+0.046  0.468+0.045 0.472+0.038 0.463+0.041 | 0.417£0.042  0.534£0.216 0.38+0.101
& GEG-SP | 0.425+0.044 = 0.43£0.046  0.408+0.04 0.404=0.041 | 0.04+0.058 0.127+0.266 0.009-:0.136
S GEG - EO | 0.48140.038 0.45440.037 0.46240.034  0.45240.035 | 0.3440.041 0.362£0.18 0.265+0.087
GEG - CP | 0.364£0.047 ~ 0.4£0.06 0.339£0.04  0.32+0.048 | 0.17940.085  0.34240.265 0.208+0.124
GB 0.676+£0.031  0.606+0.032  0.602+0.027  0.6£0.029 0.167+0.13 0.18+0.156 0.127+0.115
%ﬁ GEG - SP || 0.674£0.021 0.59840.029 0.59340.023 0.592+0.024 | 0.012£0.065 0.085+0.154 0.05+0.056
A GEG-EO || 0.681£0.034 0.6134+0.039 0.608+0.032 0.60540.036 | 0.113+0.102  0.108+0.156 0.065+0.094
GEG - CP || 0.66340.038 ' 0.588+0.038 0.587+0.033 0.583+0.034 | 0.029+£0.104  0.06+0.157  0.03440.085
GB 1.0£0.0 1.040.0 1.0£0.0 1.0+0.0 0.134+0.024 0.0+0.001 0.0+0.001
£ GEG-SP || 0.979+0.004 0.979+0.004 0.981+0.003 0.979+0.004 | 0.004::0.029 ~ 0.0+0.001 0.081+£0.012
—  GEG - EO 1.04+0.0 1.04£0.0 1.0£0.0 1.0+0.0 0.134+0.024 0.0+0.001 0.0+0.001
GEG - CP || 0.944£0.007 0.94940.006 0.954+0.006 0.948+0.007 | 0.056+£0.031 0.0+0.001 0.044+0.016
.. GB 0.954+0.014  0.94840.014 0.948+0.014 0.9474+0.014 | 0.051+0.058  0.015+0.099  0.007+0.055
% GEG - SP || 0.92940.022 ' 0.931+0.018 0.92740.02 0.927£0.021 | 0.01+0.072 0.007+0.082  0.028+0.057
8 GEG - EO || 0.95+£0.014 0.948+0.014 0.948+0.014 0.947£0.014 | 0.051£0.058  0.015£0.099  00.007+0.055
GEG - CP || 0.95+0.014 0.9484+0.014 0.948+0.014 0.947+0.014 | 0.051£0.058  0.015£0.099  0.007+0.055
GB 0.867£0.013  0.88+0.01  0.864+0.014  0.8740.012 0.031+0.04 0.166+0.064 0.061+0.037
;é GEG - SP 0.874£0.013  0.885+0.01  0.866+0.014 0.87340.012 | 0.011+0.042  0.188+0.068 0.082+0.039
& GEG-EO | 0.667+0.023 0.734£0.018 0.6514+0.021 0.646-£0.027 | 0.073+0.044 | 0.1234+0.063  0.01340.039
GEG - CP || 0.84940.018 | 0.859£0.02 0.852+0.013 0.854£0.016 | 0.062+£0.054 = 0.134£0.061  0.029+0.042
GB 0.606+£0.015 0.56640.043  0.4534+0.02  0.475+0.026 | 0.116£0.038  0.055+0.067 0.092+0.035
£ GEG-sP 0.64+0.015  0.559+0.049 0.45240.015 0.475+0.022 | 0.006£0.046 0.032+£0.059 = 0.014+0.043
= GEC-EO 0.6+0.016  0.554+0.042 0.445+0.019 0.466+0.025 | 0.041£0.039 0.001+0.054  0.02+0.032
GEG - CP || 0.606£0.019 0.56440.042 0.453+0.015 0.4754+0.02 | 0.064£0.048  0.017£0.057 0.043+0.042

the baseline classifier. Therefore, in these cases, applying a bias mitiga-
tion approach may not be needed. Nevertheless, even when higher than the
baseline, the bias achieved by GEG is still low and not alarming (all values
are < 0.1).

Answer to RQ4: GEG is effective in bias mitigation even when more complex
base classifiers are employed, especially when the bias of the base classifier is
relatively high.

5.5. Practical Insights
From our empirical analysis, we can draw the following main insights and
recommendations on using GEG:

e GEG is effective in bias mitigation for multi-class classification regard-
less of the base classifier employed.
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e When employing an LR classifier for multi-class classification tasks,
adopting GEG in use cases where the number of classes to predict is
< 4 can also increase the effectiveness of the model.

e When adopting more complex classifiers such as RF or GB for multi-
class classification, GEG is still effective in bias mitigation, but it may
decrease the prediction’s effectiveness. Nevertheless, this decrease may
be systemic to achieve higher fairness with highly effective classifiers.

e GB emerged as the most effective and fair model for multi-class clas-
sification. Nevertheless, we show that GEG is effective at mitigating
bias when the bias of the base GB model is relatively high.

e Concerning binary classification, users can employ GEG-CP in use
cases where higher fairness is more relevant than having more posi-
tive outcomes predicted (e.g., use cases protected by specific regula-
tions [7]).

e We suggest adopting GEG instead of the pre-preprocessing DEMV
approach to achieve higher fairness. Additionally, when applied to
datasets with low class imbalance, GEG can achieve higher prediction
effectiveness than DEMV.

6. Conclusion and Future Work

In this paper, we addressed the topic of bias mitigation in multi-class clas-
sification settings. We first formulate the problem of fair multi-class learning
as a multi-objective optimisation problem under multiple linear fairness con-
straints. Next, we propose GEG, an in-processing bias mitigation method to
solve this task. In particular, GEG extends the EG approach from Agarwal
et al. [I5] to the multi-class classification setting. In addition, GEG allows
the optimisation of a classifier under multiple fairness constraints simulta-
neously. We perform an extensive evaluation of GEG against six baseline
approaches across seven multi-class and three binary datasets, using four ef-
fectiveness metrics and three fairness definitions. Our evaluation shows that
GEG is successful at mitigating bias without severely impacting the effec-
tiveness of the predictions. Additionally, we draw a set of practical insights
for practitioners on using GEG in real-world scenarios.
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Future work can extend GEG by including additional fairness constraints.

Additionally, GEG can be extended to address intersectional fairness scenar-
ios, i.e., where sensitive groups are identified by the combination of two or
more sensitive variables [47].
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